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. . . given the e�ect. . . find the cause!

Goal: for given observation y and forward operator A:

find x s.t. A(x) ≈ y

o�en solution is ambiguous, priors on x, enforce structure!
• promote structure via regularization

• model parametrization / additional constraints

Examples for explicit (but very simple) structures

• Sparsity/compressibility in some domain

• Low-rankness

→ well-established theory (compressed sensing, low-rank

recovery , superresolution etc.) with rigorous guarantees

BUT real data can have complicated structure - AI ?
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Outline

I will discuss some exemplary directions. . .

• Inverse problems and deep neural networks

• Phase retrieval with deep generative models

• Unrolling of iterative algorithms

3 / 30



Inverse Problems with Neural Networks
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Inverse Problems / Regularization

Promote desired solutions by selecting an appropriate regularizer

R : Rn → R+

minx ‖A(x)− y‖2
2
+ λR(x),

Examples for R(x):
• Tikhonov regularization ‖Wx‖2

2

• Sparsity w.r.t. some basis/dictionary: ‖Wx‖1
• Piece-wise constant signal: ‖x‖TV
• . . .

But what if desired properties can not be described
mathematically?
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Inverse Problems / Regularization

Assume, we have only an (algorithmic) denoiser f : Rn → Rn

satisfying for example

f (x+ η) ≈ x for η ∼ N (0, σ2In)

for the desired class of structured signals x.

Simple approach, build regularizer: R(x) = ‖x− f (x)‖pp

• theoretical works: Network Tikhonov - NETT ([Li etal, 2018])

• but, computing∇R(x) for descent algorithms ?

. . . di�icult for “algorithmic” f (maybe numerically or

auto-di�erentiation. . . )

can we do something without computing gradients ?
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Inverse Problems / Regularization

Regularization by Denoising - RED

If denoiser f is locally homogeneous, non-expansive and has

symmetric Jacobian. Then

RRED(x) = xᵀ(x− f (x)) ≥ 0

and ∇RRED(x) = x− f (x) [Romano, 2016 and Reehorst, 2018]

• super fast&simply,∇f (x) not needed
• can be used with plug&play algorithms like ADMM
• use existing denoiser networks like DnCNN [Zhang etal, 2017]

• above conditions rarely satisfied, but usually works

nonetheless.

Constrain also signal domain, e.g., by learning from data‼
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Inverse Problems / Generative Models

Generative models based on neural networks work well for learning

complicated signal domains

(e.g. StyleGAN [Karras et al., 2018])

https://www.thispersondoesnotexist.com

Optimize with relevant signals x in the first place.

→ Learn signal distribution from training data

→ yields generator G : Rk → Rn
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Inverse Problems / Generative Models

A Variational Auto-Encoder [Kingma, 2013] does just that:

→

→

Take decoder of VAE as signal generator G : Rk → Rn
and solve

min
z

1

2
‖AG(z)− y‖2

2
+ λ · R(G(z))

latent variable z, x = G(z) generated image
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Inverse Problems / Generative Models

Theoretical Guarantees ?

Theorem ([Bora etal,2017] )

Let G : Rk → Rn be a d-layer feed-forward neural network with ReLU
activations and A ∈ Rm,n with Ai,j ∼ N (0, 1/m) where m ' kd log n.
Let

y = Ax+ η for x ∈ Rn and noise η ∈ Rm.

Assume that z∗ minimizes ‖AG(z)− y‖2 within ε from the optimum.
Then with high probability,

‖G(z∗)− x‖2 ≤ 6min
z
‖G(z)− x‖2 + 3‖η‖2 + 2ε.

• compressed sensing inspired proofs

/ how to compute z∗ su�icently accurate (non-convex!) ?

/ undesired dimension scaling is for untrained networks
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Inverse Problems / Generative Models

MNIST with Gaussian A ∈ R128×1024

, subsampling=1/8
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Phase Retrieval with Generative Prior

12 / 30



Phase Retrieval with Generative Prior

Classical problem in physics, engineering and applied math

min
x
‖y− |Ax|2‖2

2
+ λR(x)

• nonconvex but descent methods (like

Wirtinger flow) empirically succeed if

initialization is close to optimal value
• unique solution ?

• RED has been proposed as prDEEP

[Metzler, 2018]

• solve this problem with as few
observations as possible‼

Use trained network G : Rk → Rn
[Asim et al., 2019] and

[Shamshad et al., 2018]:

min
z
‖y− |AG(z)|2‖2

2
+ λ‖G(z)‖TV
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Phase Retrieval with Generative Prior

• model error of G quite high for complicated signal domains

• slow convergence and expensive iterations

Hybrid approach: use it as initialization for a traditional method.

1 few (expensive) descent steps to approach

z̃ ≈ argmin
z
‖y− |AG(z)|2‖2

2
+ λ‖G(z)‖TV

with randomly initialized z.
2 refine, for x ∈ Rn

solve with (superfast) Randomized Kaczmarz:

x̂ := argmin
x∈Rn

‖y− |Ax|2‖2
2

initialized with x̃ = G(z̃), overcomes model error of G
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Results for MNIST

DRGD-RK

DRGD

TWF

WF

RK

0.25 1 2 4 6

Sampling rate

Al
go

rit
hm

O
rig

in
al

• y = |Ax|2
• A ∈ Cm×n

iid. complex normal

• x = 28× 28 MNIST

• sampling rate= m
n

• WF=Wirtinger flow

• TWF=truncted WF

• RK=random

Kaczmark

• DRGD-RK=deep

gradient+RK

same SSIM achieved at 1/6 sampling rate and 1/100 runtime …
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Results for Shepp-Logan

DRGD-RK

DRGD

TWF

WF

RK

0.25 1 2 4 6
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Phase Retrieval for THz Imaging

Cooperation on computational imaging with S. Augustin (DLR/HU)

collecting optics single-pixel
detector

distance 17.5 cmdistance ~1 cm

x

forward model A:
• random iid. binary masks

• discretized di�raction model (DM→S & DS→D)

[Katkovnik et al., 2009]

17 / 30



Phase Retrieval for THz Imaging

e�ective masks a�er propagating di�erent (stand-o�) distances?

0mm

abs

phase

Propagation distance

1mm 10mm 20mm

di�raction matrices DM→S loosing rank with increased propagation

distance [Katkovnik et al., 2009]
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Results for MNIST at 0.125cm stand-o�

DRGD-RK

DRGD

TWF

Al
go

rit
hm

0.5 1 2 4 6

Sampling rate

O
rig

in
al

0.125cm
Standoff 
distance
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Results for MNIST at 2.0cm stand-o�

DRGD-RK

DRGD

TWF

Al
go

rit
hm

0.5 1 2 4 6

Sampling rate

O
rig

in
al

2.0cm
Standoff 
distance
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Unfolding Iterative Algorithms

Classical

algorithm

y
training

data

{(xd , yd)}Dd=1

x̂
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Unfolding Algorithms into Networks

• recover a sparse x from y = Ax+ e where e ∼ N(0, σ2)
• popular algorithm like ISTA [Daubechies etal, 2004]

x̂t+1 = g(Sx̂t + By) with

S , I− ATA

B , AT

• mismatched prior: x ∼Bernoulli-Gaussian (BG) (unknown)

learned ISTA (LISTA): unfold iterations as net and ”learn” improved

parameters using training data [Gregor &LeCun, 2010]

S

By

x̂1 x̂2 x̂3
x̂4g(·) Sg(·) Sg(·) g(·)
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Unfolding Algorithms into Networks

• Approximate message passing (AMP) with

Onsager-decoupled iterations [Donoho,

Maleki & Montanari 2009], unfold. . .

• ”learned AMP” (LAMP) [Borgerding &

Schniter, 2016]

t th layer: LISTA→ LAMP (Onsager-decoupled layers)

Bt
ct‖•‖2√

m

g(•; •)

At

x̂t x̂t+1

vt vt+1

y y

rt

λt

N

m

〈
g′
〉

can we learn the denoiser matched to unknown prior?
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Unfolding Algorithms into Networks

• learned algorithms adapt to unknown “prior”

• substantially reduced iteration count

24 / 30



Conclusion

• neural networks as realistic data priors in recovery algorithms

. . . learned regularizer/ denoiser / proximal mapping

. . . generative model (VAE/GAN etc.)

• helpful in solving challenging problems like phase retrieval for
realistic data

. . . overcome generator model error by using only as initialization

to fast traditional algorithms

• unfolding iterative algorithms and tuning

Thank you!
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