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Introduction & Motivation

I Scenario where many devices/sensors send sporadic data to a central “city-wide” collector.

I Collector is a massive MIMO base station with a large number M of antennas.

I 1) activity detection; 2) large-scale fading coefficient 3) grant-free unsourced random access.
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Introduction & Motivation

This simplified linear model is relevant:

n = A

N

Γ
1
2

+z
h

w

z = AΓ
1
2 h + w

where
I A = (a1| . . . |aN ) ∈ Cn×N sequence matrix (known), n = 50 . . . 200

I h ∈ CN channel, and w ∈ Cn noise (unknown)

I Γ = diag(γ) reflects large scale fading γ ∈ RN
+ (known/unknown)

I supp(γ) is activity pattern or data bits (unknown)

Recent research focus is on:
I Bayesian approaches, like treat γ as iid. with “sparse” prior, unstable

I Non-Bayesian: treat γ as deterministic unknown nonnegative and sparse, recover γ
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Introduction & Motivation

I Raw measurement model
Z = AΓ

1
2 H + W

where unknown channel H and noise W are independent with iid entries

I for single antenna (M = 1)

z = AΓ
1
2 h + w =: Ax + w ∈ Cn with

rule of thumb for s-sparse x : n & s log(N/s) for iid. subgaussian A

IDEA: Decoding via sparse covariance matching
I Each column z of Z is treated as realization of random vector with covariance

Σγ := Ezz∗ = AΓ
1
2 E(hh∗)Γ

1
2 A∗ + E(ww∗)

= AΓA∗ + σ2Id =: A(γ)

I Decode from: empirical covariance Σ̂γ := 1
M ZZ∗ = Σγ + E where E depends on γ

I “Compressed sensing problem” (informal version)

find γ ≥ 0 such that Σ̂γ ≈ Σγ = A(γ)

, This work: s . n2 log2(N/n2) for iid. subgaussian A and M ' s

7 / 25 Sparse Nonneg Mixtures of PSD matrices P. Jung



Introduction & Motivation

I Raw measurement model
Z = AΓ

1
2 H + W

where unknown channel H and noise W are independent with iid entries

I for single antenna (M = 1)

z = AΓ
1
2 h + w =: Ax + w ∈ Cn with

rule of thumb for s-sparse x : n & s log(N/s) for iid. subgaussian A

IDEA: Decoding via sparse covariance matching
I Each column z of Z is treated as realization of random vector with covariance

Σγ := Ezz∗ = AΓ
1
2 E(hh∗)Γ

1
2 A∗ + E(ww∗)

= AΓA∗ + σ2Id =: A(γ)

I Decode from: empirical covariance Σ̂γ := 1
M ZZ∗ = Σγ + E where E depends on γ

I “Compressed sensing problem” (informal version)

find γ ≥ 0 such that Σ̂γ ≈ Σγ = A(γ)

, This work: s . n2 log2(N/n2) for iid. subgaussian A and M ' s

7 / 25 Sparse Nonneg Mixtures of PSD matrices P. Jung



Introduction & Motivation

I Raw measurement model
Z = AΓ

1
2 H + W

where unknown channel H and noise W are independent with iid entries

I for single antenna (M = 1)

z = AΓ
1
2 h + w =: Ax + w ∈ Cn with

rule of thumb for s-sparse x : n & s log(N/s) for iid. subgaussian A

IDEA: Decoding via sparse covariance matching
I Each column z of Z is treated as realization of random vector with covariance

Σγ := Ezz∗ = AΓ
1
2 E(hh∗)Γ

1
2 A∗ + E(ww∗)

= AΓA∗ + σ2Id =: A(γ)

I Decode from: empirical covariance Σ̂γ := 1
M ZZ∗ = Σγ + E where E depends on γ

I “Compressed sensing problem” (informal version)

find γ ≥ 0 such that Σ̂γ ≈ Σγ = A(γ)

, This work: s . n2 log2(N/n2) for iid. subgaussian A and M ' s

7 / 25 Sparse Nonneg Mixtures of PSD matrices P. Jung



Introduction & Motivation

I Raw measurement model
Z = AΓ

1
2 H + W

where unknown channel H and noise W are independent with iid entries

I for single antenna (M = 1)

z = AΓ
1
2 h + w =: Ax + w ∈ Cn with

rule of thumb for s-sparse x : n & s log(N/s) for iid. subgaussian A

IDEA: Decoding via sparse covariance matching
I Each column z of Z is treated as realization of random vector with covariance

Σγ := Ezz∗ = AΓ
1
2 E(hh∗)Γ

1
2 A∗ + E(ww∗)

= AΓA∗ + σ2Id =: A(γ)

I Decode from: empirical covariance Σ̂γ := 1
M ZZ∗ = Σγ + E where E depends on γ

I “Compressed sensing problem” (informal version)

find γ ≥ 0 such that Σ̂γ ≈ Σγ = A(γ)

, This work: s . n2 log2(N/n2) for iid. subgaussian A and M ' s

7 / 25 Sparse Nonneg Mixtures of PSD matrices P. Jung



Recovery of Nonnegative-Sparse Vectors from Matrix Observation
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Background, BPDN Recovery via Nullspace Property

A : RN 7→ Cn×n satisfies `q-robust nullspace property (`q-NSP, q ≥ 1) of order s wrt ‖·‖ with
parameters ρ ∈ (0, 1) and τ > 0 if

‖vS‖q ≤
ρ

s1−1/q
‖vSc‖1 + τ ‖A(v)‖

holds for all v ∈ RN and S ⊂ [N] with |S| ≤ s

Well-known results for BPDN [Foucart, Rauhut 2014]

x] = arg min ‖z‖1 s.t. ‖A(z)− Y‖ ≤ ε (BPDN)

If A has `q–NSP of order s with parameters (ρ, τ ) wrt ‖ · ‖:∥∥∥x] − x
∥∥∥

p
.

C(ρ)

s1−1/p
σs(x)1 +

D(ρ)τ

s1/q−1/p
ε

holds for all Y = A(x) + E with ‖E‖ ≤ ε and 1 ≤ p ≤ q.

/ Problematic, if noise depends on x (Poisson noise, empirical covariance matching problems)

I Quotient property [Wojtaszczyk,2010] . . . or algorithmic approaches. . .

, Non-negativity & “biased” measurement models [Donoho92,Bruckstein04,. . . ]
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M+-criterion makes `1-regularization superfluous

I “biased measurements” means

I “. . . origin does not belong to convex hull of
the columns of A” [Donoho92,Bruckstein04,. . . ]

I Equivalent toM+-criterion

∃T s.t. w = A∗(T ) > 0

I Imagine a noiseless case with w = 1 ' (1, 1, 1, 1 . . . ):

‖x‖1
x≥0
= 〈1, x〉 = 〈w , x〉 = 〈A∗(T ), x〉 = 〈T ,A(x)〉 = 〈T ,Y 〉 = const,

no reason to minimize the `1-norm!!

I For general w > 0 this will depend on

κ := κ(A∗(T )) =
max wi

min wi

I combining with nullspace property [Kabanava et al., 2016] and [Kueng and PJ, 2018]
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Non-neg. Recovery Guarantee for Generic Norm

Theorem ([Jaensch, PJ 2019], [Kueng, PJ 2018])

Let A : RN 7→ Cn×n be a linear map with
1 `q–NSP of order s wrt norm ‖ · ‖ and parameter ρ ∈ [0, 1) and τ > 0 and

2 fulfills M+-criterion for T ∈ Cn×n yielding κ = κ(A∗(T ))

If ρκ < 1 then for any x ≥ 0 and E the solution

x] = arg min
z≥0
‖A(z)− Y‖. (1)

for Y = A(x) + E obeys

‖x] − x‖p ≤
C′σs(x)1

s1− 1
p

+

D′
(
τ +

‖A∗(T )‖−1
∞ ‖T‖

◦

s
1− 1

q

)
s

1
q−

1
p

‖E‖

for all 1 ≤ p ≤ q, where C′ := 2 (1+κρ)2

1−κρ κ and D′ := 2 3+κρ
1−κρκ.

I Almost same guarantees as for optimally tuned BPDN, i.e. with instantaneous noise bound

I Strength of “self-tuning” depends on dimension-scaling of ‖A∗(T )‖−1
∞ ‖T‖◦.
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Non-neg. Recovery Guarantee for Generic Norm

I For non-negative mixture of positive-semidefinite matrices Ai � 0:

A(x) =
N∑

i=1

xi Ai x ≥ 0

we have A∗(Id) = (TrAi )
N
i=1 > 0⇒ M+ is trivially fulfilled, and

min
z≥0
‖A(z)− Y‖

is very useful for robust sparse covariance matching problems

I NSP & M+ ⇒ “for all s-sparse x ≥ 0 and all z ≥ 0 it holds”

‖z − x‖2 . κ

(
τ +

‖T‖◦

‖A∗(T )‖∞
√

s

)
‖A(z − x)‖
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Rankone Subgaussian Random Model
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Rankone Subgaussian Random Model

I Sparse non-negative mixture of {ai a∗i }
N
i=1:

A(x) =
N∑

i=1

xi ai a∗i x ≥ 0

A is also called as (columnwise) self-Khatri-Rao product of (a1| . . . |aN ).

Random model for the sequences
I {ai}N

i=1 ⊂ Cn independent with iid. circular-symmetric subgaussian entries
(real/imag. independent, zero mean, variance 1

2 , ψ2–norm at most ψ2)

I A∗(T ) = (〈ai ,Tai 〉)N
i=1

T =Id
= (‖ai‖2

2)N
i=1 ⇒ M+-criterion holds whp for κ ≈ 1. . .

Lemma (M+-criterion holds whp for κ ≈ 1)

For T ∼ Id and η ∈ (0, 1) it holds that κ(A∗(T )) ≤ 1+η
1−η with probability at least

1− N exp(−cn ·min{
η2

ψ4
2
,
η

ψ2
2
}).

Beyond independent components, “convex concentration property” [Adamczak, 2015]
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Steps to proof Nullspace Properties

Nullspace Property. . .

I From our assumption: A has “independent columns” vec(ai a∗i ) ∈ Cn2

I ai = (ai,1, . . . , ai,n) ∈ Cn is subgaussian

I ai a∗i ∈ Cn×n is subexponential

I E‖ai ai‖2
F = E‖ai‖4

2 = n2

I well–known: (after normalization) sufficient RIP implies NSP [Foucart, Rauhut 2014]

Thus, if δ2s(Φ) ≤ δ < 4√
41

then Φ has `2–NSP of order s wrt ‖ · ‖2 with parameters

ρ ≤
δ√

1− δ2 − δ/4
and τ ≤

√
1 + δ√

1− δ2 − δ/4
.

I RIP for independent heavy-tailed columns. . .
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RIP for heavy-tailed column-independent matrices

Theorem ([Adamczak et al. 2011])

Let X1, ...,XN ∈ Rm be independent ψ1-random vectors with E{‖Xi‖2
2} = m and let

ψ = maxi≤N ‖Xi‖ψ1 . Let θ′ ∈ (0, 1), K ,K ′ ≥ 1 and set ξ = ψK + K ′. Then for A := (X1|...|XN )

δs

(
A
√

m

)
≤ Cξ2

√
s
m

log

 eN

s
√

s
m

+ θ′ (2)

holds with probability larger then

1− exp(−cK
√

s log(
eN

s
√

s
m

)) (3)

− P(max
i≤N
‖Xi‖2 ≥ K ′

√
m)− P(max

i≤N

∣∣∣∣∣‖Xi‖2
2

m
− 1

∣∣∣∣∣ ≥ θ′), (4)

where C, c > 0 are universal constants.

Adamczak, Litvak, Pajor and Tomczak-Jaegermann, “Restricted Isometry Property of Matrices with Independent Columns and
Neighborly Polytopes by Random Sampling”
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Neighborly Polytopes by Random Sampling”
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Steps to proof Nullspace Properties

/ A can not have optimal RIP since Eai a∗i = Id (which was essential for M+. . . )

/ Equiv., ‖ai a∗i ‖ψ1 = sup‖Z‖F≤1 ‖〈ai ,Zai 〉‖ψ1 = O(
√

n) depends on dimension

, but optimal NSP is still feasible

I two options to get RIP statements here. . .

1 centering (of independent interest. . . ) and/or

2 considering only off-diagonal part, better for proving NSP in our case. . .
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RIP for centered self-Khatri-Rao Products

1 Centering

Theorem ([Fengler, PJ 2019])

Let A = (a1| . . . |aN ) ∈ Rn×N with iid ψ2-entries aij with Eaij = 0, Ea2
ij = 1 and ‖aij‖ψ2 ≤ ψ2.

Let A = (X1| . . . |XN ) ∈ Rn2×N be the centered self-Khatri-Rao product of A, i.e., with iid.
columns

Xi ' vec(ai a∗i − Eai a∗i )

Then δs

(
A
n

)
< δ for any δ > 0 with probability ≥ 1− C exp(−cδn/ψ2

2) as long as

s . n2/ log2(N/n2)

I similar statement if ai is drawn uniformly from sphere of radius
√

n (no iid. components
anymore. . . )
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The Nullspace Property

1 Off-diagonal part Xi ' P(ai a∗i ) where P : Cn×n → R2n(n−1)

Theorem ([Jaensch, PJ 2019])

Let A(x) =
∑N

i=1 xi ai a∗i with ai ∈ Cn independent circular-symmetric and maxi∈[N] ‖ai‖ψ2 ≤ ψ2.
Let m = 2n(n − 1) and assume

s . m log−2(N/m)

Then, with probability ≥ 1− exp(−cn/ψ2
2) (i) the matrix Φ = 1√

m
P ◦A ∈ Rm×N has RIP and (ii) A

has the `2-NSP of order s w.r.t. to ‖ · ‖F with parameters ρ and τ/
√

m (depending on the RIP
constant δ2s).

I (ii) is obvious since RIP for Φ implies NSP for A:

‖xS‖2 ≤
ρ
√

s
‖xSc‖1 + τ ‖Φx‖2 =

ρ
√

s
‖xSc‖1 +

τ
√

m
‖P(A(x))‖2 .

≤
ρ
√

s
‖xSc‖1 +

τ
√

m
‖A(x)‖F
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RIP for Off-Diagonal Part

Xi ' P(ai a∗i ) ∈ R2n(n−1), concentration of the polynomial

‖Xi‖2
2 '

n∑
k 6=l

(|ai,k ||ai,l |)2 =
∑

(k,l)∈I
w2

k w2
l =: f (w) (6)

for wk = [Re(ai,k ), Im(ai,k )] and I = {(k , l) ∈ [2n]× [2n] : k 6= l, k 6= n + l, l 6= n + k}

Lemma

Let w = (w1, . . . ,w2N ) be RV with independent ‖wi‖ψ2 ≤ ψ2. The polynomial f (w) in (6) fulfills

P
(

1
m
|f (w)− Ef (w)| ≥ t

)
≤ 2 exp(−c

√
t · n/ψ2

2)

where m = 2n(n − 1).

I Follows from [Götze, Sambala & Sinulis, 2019], [Adamczak & Wolf, 2015]
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Recovery Guarantee

Theorem ([Jaensch, PJ 2019])

Let A : RN 7→ Cn×n be defined as

A(x) =
N∑

i=1

xi ai a∗i

where {ai}N
i=1 ⊂ Cn are independent with zero-mean, independent circular-symmetric ψ2-entries

of unit variance. If s . n2/ log2(N/n2) the following holds with probability ≥ 1− exp(−cn/ψ2
2). For

all x ≥ 0 and all E the solution

x] = arg min
z≥0
‖A(z)− Y‖F for Y = A(x) + E (NNLS)

obeys for 1 ≤ p ≤ 2 the following bound:

‖x] − x‖p ≤
c1σs(x)1

s1− 1
p

+
c2(c3 +

√
n
s )

s
1
2−

1
p

‖E‖F
n

I one can show E‖E‖2
F = E‖Σ̂γ − Σγ‖2

F ≤ n‖γ‖1/M where M = #antennas

I this yields ‖γ−γ
]‖1

‖γ‖1
. (
√

n +
√

s)/
√

M ⇒ M ∼ s
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Numerical Experiments
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Phase transition for NNLS in the noiseless case (N = 2000). The function s ≈ n2/4 − n − 5 is overlayed in
black.
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Conclusion

I massive antennas support activity s ' n2 (instead of s ' n) with random pilots of length n

I sparse covariance matching problem formulated as tuning-free convex program

I guarantees depend on M+-criterion and nullspace properties

I both hold whp for centered subgaussian iid. pilots

I RIP for column-independent subexp. matrices with particular ⊗-structure
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Thank you

Thanks for Your Attention
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based on
I Kueng and PJ. “Robust nonnegative sparse recovery and the nullspace property of 0/1 measurements”, 2018
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