Robust Recovery of Sparse Nonnegative Weights from Mixtures of Positive-Semidefinite matrices

Peter Jung
joint work with A. Fengler, F. Jaensch, S. Haghighatshoar and G. Caire

Technical University of Berlin, Germany
? 흔

Berlin
July 8th, 2019

(1)
Introduction \& Motivation

2 Recovery of Nonnegative-Sparse Vectors from Matrix Observation

3 Rankone Subgaussian Random Model

Introduction \& Motivation

- Scenario where many devices/sensors send sporadic data to a central "city-wide" collector.
- Collector is a massive MIMO base station with a large number M of antennas.
- 1) activity detection; 2) large-scale fading coefficient 3) grant-free unsourced random access.

Introduction \& Motivation

This simplified linear model is relevant:

where

- $A=\left(a_{1}|\ldots| a_{N}\right) \in \mathbb{C}^{n \times N}$ sequence matrix (known), $n=50 \ldots 200$
- $h \in \mathbb{C}^{N}$ channel, and $w \in \mathbb{C}^{n}$ noise (unknown)
- $\boldsymbol{\Gamma}=\operatorname{diag}(\gamma)$ reflects large scale fading $\gamma \in \mathbb{R}_{+}^{N}$ (known/unknown)
- $\operatorname{supp}(\gamma)$ is activity pattern or data bits (unknown)

Recent research focus is on:

- Bayesian approaches, like treat γ as iid. with "sparse" prior, unstable

Introduction \& Motivation

This simplified linear model is relevant:

where

- $A=\left(a_{1}|\ldots| a_{N}\right) \in \mathbb{C}^{n \times N}$ sequence matrix (known), $n=50 \ldots 200$
- $H \in \mathbb{C}^{N \times M}$ channel, and $W \in \mathbb{C}^{n \times M}$ noise (unknown)
- $\boldsymbol{\Gamma}=\operatorname{diag}(\gamma)$ reflects large scale fading $\gamma \in \mathbb{R}_{+}^{N}$ (known/unknown)
$-\operatorname{supp}(\gamma)$ is activity pattern or data bits (unknown)

Recent research focus is on:

- Bayesian approaches, like treat γ as iid. with "sparse" prior, unstable
- Non-Bayesian: treat γ as deterministic unknown nonnegative and sparse, recover γ

Introduction \& Motivation

- Raw measurement model

$$
Z=A \Gamma^{\frac{1}{2}} H+W
$$

where unknown channel H and noise W are independent with iid entries

- for single antenna ($M=1$)

$$
z=A \Gamma^{\frac{1}{2}} h+w=: A x+w \in \mathbb{C}^{n} \quad \text { with }
$$

rule of thumb for s-sparse $x: n \gtrsim \boldsymbol{s} \boldsymbol{\operatorname { l o g }}(\boldsymbol{N} / \boldsymbol{s})$ for iid. subgaussian A

Introduction \& Motivation

- Raw measurement model

$$
Z=A \Gamma^{\frac{1}{2}} H+W
$$

where unknown channel H and noise W are independent with iid entries

- for single antenna ($M=1$)

$$
z=A \Gamma^{\frac{1}{2}} h+w=: A x+w \in \mathbb{C}^{n} \quad \text { with }
$$

rule of thumb for s-sparse $x: n \gtrsim \boldsymbol{s} \boldsymbol{\operatorname { l o g }}(\boldsymbol{N} / \boldsymbol{s})$ for iid. subgaussian A
IDEA: Decoding via sparse covariance matching

- Each column z of Z is treated as realization of random vector with covariance

$$
\begin{aligned}
\Sigma_{\gamma} & :=\mathbb{E} z z^{*}=A \Gamma^{\frac{1}{2}} \mathbb{E}\left(h h^{*}\right) \Gamma^{\frac{1}{2}} A^{*}+\mathbb{E}\left(w w^{*}\right) \\
& =A \Gamma A^{*}+\sigma^{2} \mathrm{ld}=: \mathcal{A}(\gamma)
\end{aligned}
$$

Introduction \& Motivation

- Raw measurement model

$$
Z=A \Gamma^{\frac{1}{2}} H+W
$$

where unknown channel H and noise W are independent with iid entries

- for single antenna ($M=1$)

$$
z=A \Gamma^{\frac{1}{2}} h+w=: A x+w \in \mathbb{C}^{n} \text { with }
$$

rule of thumb for s-sparse $x: n \gtrsim \boldsymbol{s} \boldsymbol{\operatorname { l o g }}(N / s)$ for iid. subgaussian A

IDEA: Decoding via sparse covariance matching

- Each column z of Z is treated as realization of random vector with covariance

$$
\begin{aligned}
\Sigma_{\gamma} & :=\mathbb{E} z z^{*}=A \Gamma^{\frac{1}{2}} \mathbb{E}\left(h h^{*}\right) \Gamma^{\frac{1}{2}} A^{*}+\mathbb{E}\left(w w^{*}\right) \\
& =A \Gamma A^{*}+\sigma^{2} \operatorname{ld}=: \mathcal{A}(\gamma)
\end{aligned}
$$

- Decode from: empirical covariance $\hat{\Sigma}_{\gamma}:=\frac{1}{M} Z Z^{*}=\Sigma_{\gamma}+E$ where E depends on γ
- "Compressed sensing problem" (informal version)

$$
\text { find } \gamma \geq 0 \quad \text { such that } \quad \hat{\Sigma}_{\gamma} \approx \Sigma_{\gamma}=\mathcal{A}(\gamma)
$$

Introduction \& Motivation

- Raw measurement model

$$
Z=A \Gamma^{\frac{1}{2}} H+W
$$

where unknown channel H and noise W are independent with iid entries

- for single antenna ($M=1$)

$$
z=A \Gamma^{\frac{1}{2}} h+w=: A x+w \in \mathbb{C}^{n} \text { with }
$$

rule of thumb for s-sparse $x: n \gtrsim \boldsymbol{s} \boldsymbol{\operatorname { l o g }}(\boldsymbol{N} / \boldsymbol{s})$ for iid. subgaussian A

IDEA: Decoding via sparse covariance matching

- Each column z of Z is treated as realization of random vector with covariance

$$
\begin{aligned}
\Sigma_{\gamma} & :=\mathbb{E} z z^{*}=A \Gamma^{\frac{1}{2}} \mathbb{E}\left(h h^{*}\right) \Gamma^{\frac{1}{2}} A^{*}+\mathbb{E}\left(w w^{*}\right) \\
& =A \Gamma A^{*}+\sigma^{2} \operatorname{ld}=: \mathcal{A}(\gamma)
\end{aligned}
$$

- Decode from: empirical covariance $\hat{\Sigma}_{\gamma}:=\frac{1}{M} Z Z^{*}=\Sigma_{\gamma}+E$ where E depends on γ
- "Compressed sensing problem" (informal version)

$$
\text { find } \gamma \geq 0 \quad \text { such that } \quad \hat{\Sigma}_{\gamma} \approx \Sigma_{\gamma}=\mathcal{A}(\gamma)
$$

(-) This work: $s \lesssim n^{2} \log ^{2}\left(N / n^{2}\right)$ for iid. subgaussian A and $M \simeq s$

Recovery of Nonnegative-Sparse Vectors from Matrix Observation

Background, BPDN Recovery via Nullspace Property

$\mathcal{A}: \mathbb{R}^{N} \mapsto \mathbb{C}^{n \times n}$ satisfies ℓ^{q}-robust nullspace property (ℓ^{q}-NSP, $q \geq 1$) of order s wrt $\|\cdot\|$ with parameters $\rho \in(0,1)$ and $\tau>0$ if

$$
\left\|v_{S}\right\|_{q} \leq \frac{\rho}{s^{1-1 / q}}\left\|v_{S^{c}}\right\|_{1}+\tau\|\mathcal{A}(v)\|
$$

holds for all $v \in \mathbb{R}^{N}$ and $S \subset[N]$ with $|S| \leq s$

Background, BPDN Recovery via Nullspace Property

$\mathcal{A}: \mathbb{R}^{N} \mapsto \mathbb{C}^{n \times n}$ satisfies ℓ^{q}-robust nullspace property (ℓ^{q}-NSP, $q \geq 1$) of order s wrt $\|\cdot\|$ with parameters $\rho \in(0,1)$ and $\tau>0$ if

$$
\left\|v_{S}\right\|_{q} \leq \frac{\rho}{s^{1-1 / q}}\left\|v_{S^{c}}\right\|_{1}+\tau\|\mathcal{A}(v)\|
$$

holds for all $v \in \mathbb{R}^{N}$ and $S \subset[N]$ with $|S| \leq s$

Well-known results for BPDN [Foucart, Rauhut 2014]

$$
\begin{equation*}
x^{\sharp}=\arg \min \|z\|_{1} \quad \text { s.t. } \quad\|\mathcal{A}(z)-Y\| \leq \epsilon \tag{BPDN}
\end{equation*}
$$

If \mathcal{A} has $\ell^{q}-$ NSP of order s with parameters (ρ, τ) wrt $\|\cdot\|$:

$$
\left\|x^{\sharp}-x\right\|_{p} \lesssim \frac{C(\rho)}{s^{1-1 / p}} \sigma_{s}(x)_{1}+\frac{D(\rho) \tau}{s^{1 / q-1 / p}} \epsilon
$$

holds for all $Y=\mathcal{A}(x)+E$ with $\|E\| \leq \epsilon$ and $1 \leq p \leq q$.

Background, BPDN Recovery via Nullspace Property

$\mathcal{A}: \mathbb{R}^{N} \mapsto \mathbb{C}^{n \times n}$ satisfies ℓ^{q}-robust nullspace property (ℓ^{q}-NSP, $q \geq 1$) of order s wrt $\|\cdot\|$ with parameters $\rho \in(0,1)$ and $\tau>0$ if

$$
\left\|v_{S}\right\|_{q} \leq \frac{\rho}{s^{1-1 / q}}\left\|v_{S^{c}}\right\|_{1}+\tau\|\mathcal{A}(v)\|
$$

holds for all $v \in \mathbb{R}^{N}$ and $S \subset[N]$ with $|S| \leq s$

Well-known results for BPDN [Foucart, Rauhut 2014]

$$
\begin{equation*}
x^{\sharp}=\arg \min \|z\|_{1} \quad \text { s.t. } \quad\|\mathcal{A}(z)-Y\| \leq \epsilon \tag{BPDN}
\end{equation*}
$$

If \mathcal{A} has $\ell^{q}-$ NSP of order s with parameters (ρ, τ) wrt $\|\cdot\|$:

$$
\left\|x^{\sharp}-x\right\|_{p} \lesssim \frac{C(\rho)}{s^{1-1 / p}} \sigma_{s}(x)_{1}+\frac{D(\rho) \tau}{s^{1 / q-1 / p}} \epsilon
$$

holds for all $Y=\mathcal{A}(x)+E$ with $\|E\| \leq \epsilon$ and $1 \leq p \leq q$.
(2) Problematic, if noise depends on x (Poisson noise, empirical covariance matching problems)

- Quotient property [Wojtaszczyk,2010] . . . or algorithmic approaches. . .

Background, BPDN Recovery via Nullspace Property

$\mathcal{A}: \mathbb{R}^{N} \mapsto \mathbb{C}^{n \times n}$ satisfies ℓ^{q}-robust nullspace property (ℓ^{q}-NSP, $q \geq 1$) of order s wrt $\|\cdot\|$ with parameters $\rho \in(0,1)$ and $\tau>0$ if

$$
\left\|v_{S}\right\|_{q} \leq \frac{\rho}{s^{1-1 / q}}\left\|v_{S^{c}}\right\|_{1}+\tau\|\mathcal{A}(v)\|
$$

holds for all $v \in \mathbb{R}^{N}$ and $S \subset[N]$ with $|S| \leq s$

Well-known results for BPDN [Foucart, Rauhut 2014]

$$
\begin{equation*}
x^{\sharp}=\arg \min \|z\|_{1} \quad \text { s.t. } \quad\|\mathcal{A}(z)-Y\| \leq \epsilon \tag{BPDN}
\end{equation*}
$$

If \mathcal{A} has $\ell^{q}-$ NSP of order s with parameters (ρ, τ) wrt $\|\cdot\|$:

$$
\left\|x^{\sharp}-x\right\|_{p} \lesssim \frac{C(\rho)}{s^{1-1 / p}} \sigma_{s}(x)_{1}+\frac{D(\rho) \tau}{s^{1 / q-1 / p}} \epsilon
$$

holds for all $Y=\mathcal{A}(x)+E$ with $\|E\| \leq \epsilon$ and $1 \leq p \leq q$.
(2) Problematic, if noise depends on x (Poisson noise, empirical covariance matching problems)

- Quotient property [Wojtaszczyk,2010] ... or algorithmic approaches. . .
© (Non-negativity \& "biased" measurement models [Donoho92,Bruckstein04,...]

M^{+}-criterion makes ℓ_{1}-regularization superfluous

- "biased measurements" means

M^{+}-criterion makes ℓ_{1}-regularization superfluous

- "biased measurements" means
- ". . origin does not belong to convex hull of the columns of A"[Donoho92,Bruckstein04,...
- Equivalent to \mathcal{M}^{+}-criterion
$\exists T$ s.t. $w=\mathcal{A}^{*}(T)>0$

M^{+}-criterion makes ℓ_{1}-regularization superfluous

- "biased measurements" means
- ". . origin does not belong to convex hull of the columns of A"[Donoho92,Bruckstein04,...
- Equivalent to \mathcal{M}^{+}-criterion
$\exists T$ s.t. $w=\mathcal{A}^{*}(T)>0$

- Imagine a noiseless case with $w=1 \simeq(1,1,1,1 \ldots)$:

$$
\|x\|_{1} \stackrel{x \geqq 0}{\equiv}\langle 1, x\rangle=\langle w, x\rangle=\left\langle\mathcal{A}^{*}(T), x\right\rangle=\langle T, \mathcal{A}(x)\rangle=\langle T, Y\rangle=\text { const },
$$

no reason to minimize the ℓ_{1}-norm!!

- "biased measurements" means
- ". . origin does not belong to convex hull of the columns of A"[Donoho92,Bruckstein04,...
- Equivalent to \mathcal{M}^{+}-criterion
$\exists T$ s.t. $w=\mathcal{A}^{*}(T)>0$

- Imagine a noiseless case with $w=1 \simeq(1,1,1,1 \ldots)$:

$$
\|x\|_{1} \stackrel{x \geqq 0}{\equiv}\langle 1, x\rangle=\langle w, x\rangle=\left\langle\mathcal{A}^{*}(T), x\right\rangle=\langle T, \mathcal{A}(x)\rangle=\langle T, Y\rangle=\text { const },
$$

no reason to minimize the ℓ_{1}-norm!!

- For general $w>0$ this will depend on

$$
\kappa:=\kappa\left(\mathcal{A}^{*}(T)\right)=\frac{\max w_{i}}{\min w_{i}}
$$

- combining with nullspace property [Kabanava et al., 2016] and [Kueng and PJ, 2018]

Non-neg. Recovery Guarantee for Generic Norm

Non-neg. Recovery Guarantee for Generic Norm

Theorem ([Jaensch, PJ 2019], [Kueng, PJ 2018])

Let $\mathcal{A}: \mathbb{R}^{N} \mapsto \mathbb{C}^{n \times n}$ be a linear map with
(1) $\ell^{q}-$ NSP of order s wrt norm $\|\cdot\|$ and parameter $\rho \in[0,1)$ and $\tau>0$ and
(2) fulfills M^{+}-criterion for $T \in \mathbb{C}^{n \times n}$ yielding $\kappa=\kappa\left(\mathcal{A}^{*}(T)\right)$

If $\rho \kappa<1$ then for any $x \geq 0$ and E the solution

$$
\begin{equation*}
x^{\sharp}=\arg \min _{z \geq 0}\|\mathcal{A}(z)-Y\| . \tag{1}
\end{equation*}
$$

for $Y=\mathcal{A}(x)+E$ obeys

$$
\left\|x^{\sharp}-x\right\|_{p} \leq \frac{C^{\prime} \sigma_{s}(x)_{1}}{s^{1-\frac{1}{p}}}+\frac{D^{\prime}\left(\tau+\frac{\left\|\mathcal{A}^{*}(T)\right\|_{\infty}^{-1}\|T\|^{\circ}}{s^{1-\frac{1}{q}}}\right)}{s^{\frac{1}{q}-\frac{1}{p}}}\|E\|
$$

for all $1 \leq p \leq q$, where $C^{\prime}:=2 \frac{(1+\kappa \rho)^{2}}{1-\kappa \rho} \kappa$ and $D^{\prime}:=2 \frac{3+\kappa \rho}{1-\kappa \rho} \kappa$.

- Almost same guarantees as for optimally tuned BPDN, i.e. with instantaneous noise bound

Non-neg. Recovery Guarantee for Generic Norm

Theorem ([Jaensch, PJ 2019], [Kueng, PJ 2018])

Let $\mathcal{A}: \mathbb{R}^{N} \mapsto \mathbb{C}^{n \times n}$ be a linear map with
(1) $\ell^{q}-$ NSP of order s wrt norm $\|\cdot\|$ and parameter $\rho \in[0,1)$ and $\tau>0$ and
(2) fulfills M^{+}-criterion for $T \in \mathbb{C}^{n \times n}$ yielding $\kappa=\kappa\left(\mathcal{A}^{*}(T)\right)$

If $\rho \kappa<1$ then for any $x \geq 0$ and E the solution

$$
\begin{equation*}
x^{\sharp}=\arg \min _{z \geq 0}\|\mathcal{A}(z)-Y\| . \tag{1}
\end{equation*}
$$

for $Y=\mathcal{A}(x)+E$ obeys

$$
\left\|x^{\sharp}-x\right\|_{p} \leq \frac{C^{\prime} \sigma_{s}(x)_{1}}{s^{1-\frac{1}{p}}}+\frac{D^{\prime}\left(\tau+\frac{\left\|\mathcal{A}^{*}(T)\right\|_{\infty}^{-1}\|T\|^{\circ}}{s^{1-\frac{1}{q}}}\right)}{s^{\frac{1}{q}-\frac{1}{p}}}\|E\|
$$

for all $1 \leq p \leq q$, where $C^{\prime}:=2 \frac{(1+\kappa \rho)^{2}}{1-\kappa \rho} \kappa$ and $D^{\prime}:=2 \frac{3+\kappa \rho}{1-\kappa \rho} \kappa$.

- Almost same guarantees as for optimally tuned BPDN, i.e. with instantaneous noise bound
- Strength of "self-tuning" depends on dimension-scaling of $\left\|\mathcal{A}^{*}(T)\right\|_{\infty}^{-1}\|T\|^{\circ}$.

Non-neg. Recovery Guarantee for Generic Norm

- For non-negative mixture of positive-semidefinite matrices $A_{i} \succ 0$:

$$
\mathcal{A}(x)=\sum_{i=1}^{N} x_{i} A_{i} \quad x \geq 0
$$

we have $\mathcal{A}^{*}(\operatorname{Id})=\left(\operatorname{Tr} A_{i}\right)_{i=1}^{N}>0 \Rightarrow M^{+}$is trivially fulfilled, and

$$
\min _{z \geq 0}\|\mathcal{A}(z)-Y\|
$$

is very useful for robust sparse covariance matching problems

- For non-negative mixture of positive-semidefinite matrices $A_{i} \succ 0$:

$$
\mathcal{A}(x)=\sum_{i=1}^{N} x_{i} A_{i} \quad x \geq 0
$$

we have $\mathcal{A}^{*}(\operatorname{Id})=\left(\operatorname{Tr} A_{i}\right)_{i=1}^{N}>0 \Rightarrow M^{+}$is trivially fulfilled, and

$$
\min _{z \geq 0}\|\mathcal{A}(z)-Y\|
$$

is very useful for robust sparse covariance matching problems

- NSP \& $M^{+} \Rightarrow$ "for all s-sparse $x \geq 0$ and all $z \geq 0$ it holds"

$$
\|z-x\|_{2} \lesssim \kappa\left(\tau+\frac{\|T\|^{\circ}}{\left\|\mathcal{A}^{*}(T)\right\|_{\infty} \sqrt{s}}\right)\|\mathcal{A}(z-x)\|
$$

Rankone Subgaussian Random Model

Rankone Subgaussian Random Model

- Sparse non-negative mixture of $\left\{a_{i} a_{i}^{*}\right\}_{i=1}^{N}$:

$$
\mathcal{A}(x)=\sum_{i=1}^{N} x_{i} a_{i} a_{i}^{*} \quad x \geq 0
$$

\mathcal{A} is also called as (columnwise) self-Khatri-Rao product of $\left(a_{1}|\ldots| a_{N}\right)$.

Random model for the sequences

- $\left\{a_{i}\right\}_{i=1}^{N} \subset \mathbb{C}^{n}$ independent with iid. circular-symmetric subgaussian entries (real/imag. independent, zero mean, variance $\frac{1}{2}, \psi_{2}$-norm at most ψ_{2})
- $\mathcal{A}^{*}(T)=\left(\left\langle a_{i}, T a_{i}\right\rangle\right)_{i=1}^{N} \stackrel{T \equiv l d}{=}\left(\left\|a_{i}\right\|_{2}^{2}\right)_{i=1}^{N} \Rightarrow M^{+}$-criterion holds whp for $\kappa \approx 1 \ldots$

Rankone Subgaussian Random Model

\Rightarrow Sparse non-negative mixture of $\left\{a_{i} a_{i}^{*}\right\}_{i=1}^{N}$:

$$
\mathcal{A}(x)=\sum_{i=1}^{N} x_{i} a_{i} a_{i}^{*} \quad x \geq 0
$$

\mathcal{A} is also called as (columnwise) self-Khatri-Rao product of $\left(a_{1}|\ldots| a_{N}\right)$.

Random model for the sequences

- $\left\{a_{i}\right\}_{i=1}^{N} \subset \mathbb{C}^{n}$ independent with iid. circular-symmetric subgaussian entries (real/imag. independent, zero mean, variance $\frac{1}{2}, \psi_{2}$-norm at most ψ_{2})
$\triangleright \mathcal{A}^{*}(T)=\left(\left\langle a_{i}, T a_{i}\right\rangle\right)_{i=1}^{N} \stackrel{T \text { Ild }}{=}\left(\left\|a_{i}\right\|_{2}^{2}\right)_{i=1}^{N} \Rightarrow M^{+}$-criterion holds whp for $\kappa \approx 1 \ldots$

Lemma (M^{+}-criterion holds whp for $\kappa \approx 1$)

For $T \sim I d$ and $\eta \in(0,1)$ it holds that $\kappa\left(\mathcal{A}^{*}(T)\right) \leq \frac{1+\eta}{1-\eta}$ with probability at least

$$
1-N \exp \left(-c n \cdot \min \left\{\frac{\eta^{2}}{\psi_{2}^{4}}, \frac{\eta}{\psi_{2}^{2}}\right\}\right) .
$$

Beyond independent components, "convex concentration property" [Adamczak, 2015]

Steps to proof Nullspace Properties

Nullspace Property...

- From our assumption: \mathcal{A} has "independent columns" $\operatorname{vec}\left(a_{i} a_{i}^{*}\right) \in \mathbb{C}^{n^{2}}$
$-a_{i}=\left(a_{i, 1}, \ldots, a_{i, n}\right) \in \mathbb{C}^{n}$ is subgaussian
- $a_{i} a_{i}^{*} \in \mathbb{C}^{n \times n}$ is subexponential
- $\mathbb{E}\left\|a_{i} a_{i}\right\|_{\mathbb{F}}^{2}=\mathbb{E}\left\|a_{i}\right\|_{2}^{4}=n^{2}$

Steps to proof Nullspace Properties

Nullspace Property...

- From our assumption: \mathcal{A} has "independent columns" $\operatorname{vec}\left(a_{i} a_{i}^{*}\right) \in \mathbb{C}^{n^{2}}$
- $a_{i}=\left(a_{i, 1}, \ldots, a_{i, n}\right) \in \mathbb{C}^{n}$ is subgaussian
- $a_{i} a_{i}^{*} \in \mathbb{C}^{n \times n}$ is subexponential
- $\mathbb{E}\left\|a_{i} a_{i}\right\|_{\mathrm{F}}^{2}=\mathbb{E}\left\|a_{i}\right\|_{2}^{4}=n^{2}$
- well-known: (after normalization) sufficient RIP implies NSP [Foucart, Rauhut 2014]

Thus, if $\delta_{2 s}(\Phi) \leq \delta<\frac{4}{\sqrt{41}}$ then Φ has $\ell^{2}-$ NSP of order s wrt $\|\cdot\|_{2}$ with parameters

$$
\rho \leq \frac{\delta}{\sqrt{1-\delta^{2}}-\delta / 4} \quad \text { and } \quad \tau \leq \frac{\sqrt{1+\delta}}{\sqrt{1-\delta^{2}}-\delta / 4}
$$

- RIP for independent heavy-tailed columns...

RIP for heavy-tailed column-independent matrices

Theorem ([Adamczak et al. 2011])

Let $X_{1}, \ldots, X_{N} \in \mathbb{R}^{m}$ be independent ψ_{1}-random vectors with $\mathbb{E}\left\{\left\|X_{i}\right\|_{2}^{2}\right\}=m$ and let $\psi=\max _{i \leq N}\left\|X_{i}\right\|_{\psi_{1}}$. Let $\theta^{\prime} \in(0,1), K, K^{\prime} \geq 1$ and $\operatorname{set} \xi=\psi K+K^{\prime}$. Then for $\mathcal{A}:=\left(X_{1}|\ldots| X_{N}\right)$

$$
\begin{equation*}
\delta_{s}\left(\frac{\mathcal{A}}{\sqrt{m}}\right) \leq C \xi^{2} \sqrt{\frac{s}{m}} \log \left(\frac{e N}{s \sqrt{\frac{s}{m}}}\right)+\theta^{\prime} \tag{2}
\end{equation*}
$$

holds with probability larger then

$$
\begin{align*}
& 1-\exp \left(-c K \sqrt{s} \log \left(\frac{e N}{s \sqrt{\frac{s}{m}}}\right)\right) \tag{3}\\
& -\mathbb{P}\left(\max _{i \leq N}\left\|X_{i}\right\|_{2} \geq K^{\prime} \sqrt{m}\right)-\mathbb{P}\left(\max _{i \leq N}\left|\frac{\left\|X_{i}\right\|_{2}^{2}}{m}-1\right| \geq \theta^{\prime}\right), \tag{4}
\end{align*}
$$

where $C, c>0$ are universal constants.
Adamczak, Litvak, Pajor and Tomczak-Jaegermann, "Restricted Isometry Property of Matrices with Independent Columns and Neighborly Polytopes by Random Sampling"

RIP for heavy-tailed column-independent matrices

Theorem ([Adamczak et al. 2011])

Let $X_{1}, \ldots, X_{N} \in \mathbb{R}^{m}$ be independent ψ_{1}-random vectors with $\mathbb{E}\left\{\left\|X_{i}\right\|_{2}^{2}\right\}=m$ and let $\psi=\max _{i \leq N}\left\|X_{i}\right\|_{\psi_{1}}$. Let $\theta^{\prime} \in(0,1), K, K^{\prime} \geq 1$ and set $\xi=\psi K+K^{\prime}$. Then for $\mathcal{A}:=\left(X_{1}|\ldots| X_{N}\right)$

$$
\begin{equation*}
\delta_{s}\left(\frac{\mathcal{A}}{\sqrt{m}}\right) \leq C \xi^{2} \sqrt{\frac{s}{m}} \log \left(\frac{e N}{s \sqrt{\frac{s}{m}}}\right)+\theta^{\prime} \tag{2}
\end{equation*}
$$

holds with probability larger then

$$
\begin{align*}
& 1-\exp \left(-c K \sqrt{s} \log \left(\frac{e N}{s \sqrt{\frac{s}{m}}}\right)\right) \tag{3}\\
& \tag{4}\\
& -\mathbb{P}\left(\max _{i \leq N}\left\|X_{i}\right\|_{2} \geq K^{\prime} \sqrt{m}\right)-\mathbb{P}\left(\max _{i \leq N}\left|\frac{\left\|X_{i}\right\|_{2}^{2}}{m}-1\right| \geq \theta^{\prime}\right),
\end{align*}
$$

where $C, c>0$ are universal constants.
Adamczak, Litvak, Pajor and Tomczak-Jaegermann, "Restricted Isometry Property of Matrices with Independent Columns and Neighborly Polytopes by Random Sampling"

Steps to proof Nullspace Properties

(*) \mathcal{A} can not have optimal RIP since $\mathbb{E} a_{i} a_{i}^{*}=\operatorname{ld}$ (which was essential for $M^{+} \ldots$)
(2) Equiv., $\left\|a_{i} a_{i}^{*}\right\|_{\psi_{1}}=\sup _{\|Z\|_{F} \leq 1}\left\|\left\langle a_{i}, Z a_{i}\right\rangle\right\|_{\psi_{1}}=\mathcal{O}(\sqrt{n})$ depends on dimension
© but optimal NSP is still feasible
© \mathcal{A} can not have optimal RIP since $\mathbb{E} a_{i} a_{i}^{*}=\operatorname{ld}$ (which was essential for $M^{+} \ldots$)
(2) Equiv., $\left\|a_{i} a_{i}^{*}\right\|_{\psi_{1}}=\sup _{\|Z\|_{F} \leq 1}\left\|\left\langle a_{i}, Z a_{i}\right\rangle\right\|_{\psi_{1}}=\mathcal{O}(\sqrt{n})$ depends on dimension
© but optimal NSP is still feasible

- two options to get RIP statements here...
- centering (of independent interest...) and/or
(2) considering only off-diagonal part, better for proving NSP in our case...
© Centering

Theorem ([Fengler, PJ 2019])

Let $A=\left(a_{1}|\ldots| a_{N}\right) \in \mathbb{R}^{n \times N}$ with iid ψ_{2}-entries $a_{i j}$ with $\mathbb{E} a_{i j}=0, \mathbb{E} a_{i j}^{2}=1$ and $\left\|a_{i j}\right\|_{\psi_{2}} \leq \psi_{2}$. Let $\mathcal{A}=\left(X_{1}|\ldots| X_{N}\right) \in \mathbb{R}^{n^{2} \times N}$ be the centered self-Khatri-Rao product of A, i.e., with iid. columns

$$
X_{i} \simeq \operatorname{vec}\left(a_{i} a_{i}^{*}-\mathbb{E} a_{i} a_{i}^{*}\right)
$$

Then $\delta_{s}\left(\frac{\mathcal{A}}{n}\right)<\delta$ for any $\delta>0$ with probability $\geq 1-C \exp \left(-c_{\delta} n / \psi_{2}^{2}\right)$ as long as

$$
s \lesssim n^{2} / \log ^{2}\left(N / n^{2}\right)
$$

- similar statement if a_{i} is drawn uniformly from sphere of radius \sqrt{n} (no iid. components anymore...)

The Nullspace Property

(1) Off-diagonal part $X_{i} \simeq P\left(a_{i} a_{i}^{*}\right)$ where $P: \mathbb{C}^{n \times n} \rightarrow \mathbb{R}^{2 n(n-1)}$

Theorem ([Jaensch, PJ 2019])

Let $\mathcal{A}(x)=\sum_{i=1}^{N} x_{i} a_{i} a_{i}^{*}$ with $a_{i} \in \mathbb{C}^{n}$ independent circular-symmetric and $\max _{i \in[N]}\left\|a_{i}\right\|_{\psi_{2}} \leq \psi_{2}$. Let $m=2 n(n-1)$ and assume

$$
s \lesssim m \log ^{-2}(N / m)
$$

Then, with probability $\geq 1-\exp \left(-c n / \psi_{2}^{2}\right)$ (i) the matrix $\Phi=\frac{1}{\sqrt{m}} P \circ \mathcal{A} \in \mathbb{R}^{m \times N}$ has RIP and (ii) \mathcal{A} has the $\ell^{2}-N S P$ of order s w.r.t. to $\|\cdot\|_{F}$ with parameters ρ and τ / \sqrt{m} (depending on the RIP constant $\delta_{2 s}$).

The Nullspace Property

(1) Off-diagonal part $X_{i} \simeq P\left(a_{i} a_{i}^{*}\right)$ where $P: \mathbb{C}^{n \times n} \rightarrow \mathbb{R}^{2 n(n-1)}$

Theorem ([Jaensch, PJ 2019])

Let $\mathcal{A}(x)=\sum_{i=1}^{N} x_{i} a_{i} a_{i}^{*}$ with $a_{i} \in \mathbb{C}^{n}$ independent circular-symmetric and $\max _{i \in[N]}\left\|a_{i}\right\|_{\psi_{2}} \leq \psi_{2}$. Let $m=2 n(n-1)$ and assume

$$
s \lesssim m \log ^{-2}(N / m)
$$

Then, with probability $\geq 1-\exp \left(-c n / \psi_{2}^{2}\right)$ (i) the matrix $\Phi=\frac{1}{\sqrt{m}} P \circ \mathcal{A} \in \mathbb{R}^{m \times N}$ has RIP and (ii) \mathcal{A} has the $\ell^{2}-N S P$ of order s w.r.t. to $\|\cdot\|_{F}$ with parameters ρ and τ / \sqrt{m} (depending on the RIP constant $\delta_{2 s}$).

- (ii) is obvious since RIP for Φ implies NSP for \mathcal{A} :

$$
\begin{aligned}
\left\|x_{S}\right\|_{2} & \leq \frac{\rho}{\sqrt{s}}\left\|x_{S^{c}}\right\|_{1}+\tau\|\Phi x\|_{2}=\frac{\rho}{\sqrt{s}}\left\|x_{S^{c}}\right\|_{1}+\frac{\tau}{\sqrt{m}}\|P(\mathcal{A}(x))\|_{2} . \\
& \leq \frac{\rho}{\sqrt{s}}\left\|x_{S^{c}}\right\|_{1}+\frac{\tau}{\sqrt{m}}\|\mathcal{A}(x)\|_{F}
\end{aligned}
$$

RIP for Off-Diagonal Part

$X_{i} \simeq P\left(a_{i} a_{i}^{*}\right) \in \mathbb{R}^{2 n(n-1)}$, concentration of the polynomial

$$
\begin{equation*}
\left\|X_{i}\right\|_{2}^{2} \simeq \sum_{k \neq 1}^{n}\left(\left|a_{i, k} \| a_{i, l}\right|\right)^{2}=\sum_{(k, l) \in \mathcal{I}} w_{k}^{2} w_{l}^{2}=: f(w) \tag{6}
\end{equation*}
$$

for $w_{k}=\left[\operatorname{Re}\left(a_{i, k}\right), \operatorname{Im}\left(a_{i, k}\right)\right]$ and $\mathcal{I}=\{(k, I) \in[2 n] \times[2 n]: k \neq I, k \neq n+I, I \neq n+k\}$

RIP for Off-Diagonal Part

$X_{i} \simeq P\left(a_{i} a_{i}^{*}\right) \in \mathbb{R}^{2 n(n-1)}$, concentration of the polynomial

$$
\begin{equation*}
\left\|X_{i}\right\|_{2}^{2} \simeq \sum_{k \neq l}^{n}\left(\left|a_{i, k}\right|\left|a_{i, l}\right|\right)^{2}=\sum_{(k, l) \in \mathcal{I}} w_{k}^{2} w_{l}^{2}=: f(w) \tag{6}
\end{equation*}
$$

for $w_{k}=\left[\operatorname{Re}\left(a_{i, k}\right), \operatorname{Im}\left(a_{i, k}\right)\right]$ and $\mathcal{I}=\{(k, I) \in[2 n] \times[2 n]: k \neq I, k \neq n+I, I \neq n+k\}$

Lemma

Let $w=\left(w_{1}, \ldots, w_{2 N}\right)$ be $R V$ with independent $\left\|w_{i}\right\|_{\psi_{2}} \leq \psi_{2}$. The polynomial $f(w)$ in (6) fulfills

$$
\mathbb{P}\left(\frac{1}{m}|f(w)-\mathbb{E} f(w)| \geq t\right) \leq 2 \exp \left(-c \sqrt{t} \cdot n / \psi_{2}^{2}\right)
$$

where $m=2 n(n-1)$.

- Follows from [Götze, Sambala \& Sinulis, 2019], [Adamczak \& Wolf, 2015]

Recovery Guarantee

Theorem ([Jaensch, PJ 2019])

Let $\mathcal{A}: \mathbb{R}^{N} \mapsto \mathbb{C}^{n \times n}$ be defined as

$$
\mathcal{A}(x)=\sum_{i=1}^{N} x_{i} a_{i} a_{i}^{*}
$$

where $\left\{\mathrm{a}_{i}\right\}_{i=1}^{N} \subset \mathbb{C}^{n}$ are independent with zero-mean, independent circular-symmetric ψ_{2}-entries of unit variance. If $s \lesssim n^{2} / \log ^{2}\left(N / n^{2}\right)$ the following holds with probability $\geq 1-\exp \left(-c n / \psi_{2}^{2}\right)$. For all $x \geq 0$ and all E the solution

$$
\begin{equation*}
x^{\sharp}=\arg \min _{z \geq 0}\|\mathcal{A}(z)-Y\|_{F} \quad \text { for } \quad Y=\mathcal{A}(x)+E \tag{NNLS}
\end{equation*}
$$

obeys for $1 \leq p \leq 2$ the following bound:

$$
\left\|x^{\sharp}-x\right\|_{p} \leq \frac{c_{1} \sigma_{s}(x)_{1}}{s^{1-\frac{1}{p}}}+\frac{c_{2}\left(c_{3}+\sqrt{\frac{n}{s}}\right)}{s^{\frac{1}{2}-\frac{1}{p}}} \frac{\|E\|_{F}}{n}
$$

Recovery Guarantee

Theorem ([Jaensch, PJ 2019])

Let $\mathcal{A}: \mathbb{R}^{N} \mapsto \mathbb{C}^{n \times n}$ be defined as

$$
\mathcal{A}(x)=\sum_{i=1}^{N} x_{i} a_{i} a_{i}^{*}
$$

where $\left\{a_{i}\right\}_{i=1}^{N} \subset \mathbb{C}^{n}$ are independent with zero-mean, independent circular-symmetric ψ_{2}-entries of unit variance. If $s \lesssim n^{2} / \log ^{2}\left(N / n^{2}\right)$ the following holds with probability $\geq 1-\exp \left(-c n / \psi_{2}^{2}\right)$. For all $x \geq 0$ and all E the solution

$$
\begin{equation*}
x^{\sharp}=\arg \min _{z \geq 0}\|\mathcal{A}(z)-Y\|_{F} \quad \text { for } \quad Y=\mathcal{A}(x)+E \tag{NNLS}
\end{equation*}
$$

obeys for $1 \leq p \leq 2$ the following bound:

$$
\left\|x^{\sharp}-x\right\|_{p} \leq \frac{c_{1} \sigma_{s}(x)_{1}}{s^{1-\frac{1}{p}}}+\frac{c_{2}\left(c_{3}+\sqrt{\frac{n}{s}}\right)}{s^{\frac{1}{2}-\frac{1}{p}}} \frac{\|E\|_{F}}{n}
$$

- one can show $\mathbb{E}\|E\|_{F}^{2}=\mathbb{E}\left\|\hat{\Sigma}_{\gamma}-\Sigma_{\gamma}\right\|_{F}^{2} \leq n\|\gamma\|_{1} / M \quad$ where $M=\#$ antennas
- this yields $\frac{\left\|\gamma-\gamma^{\sharp}\right\|_{1}}{\|\gamma\|_{1}} \lesssim(\sqrt{n}+\sqrt{s}) / \sqrt{M} \quad \Rightarrow M \sim s$

Numerical Experiments

Phase transition for NNLS in the noiseless case $(N=2000)$. The function $s \approx n^{2} / 4-n-5$ is overlayed in black.

- massive antennas support activity $s \simeq n^{2}$ (instead of $s \simeq n$) with random pilots of length n
- sparse covariance matching problem formulated as tuning-free convex program
- guarantees depend on M^{+}-criterion and nullspace properties
- both hold whp for centered subgaussian iid. pilots
- RIP for column-independent subexp. matrices with particular \otimes-structure

Thank you

Thanks for Your Attention

- Fengler and PJ. "On the Restricted Isometry Property of Centered Self Khatri-Rao Products", arXiv:1905.09245
- Jaensch and PJ. "Robust Recovery of Sparse Nonnegative Weights from Mixtures of Positive-Semidefinite Matrices", soon on arXiv
- Haghighatshoar, PJ and Caire, "Improved Scaling Law for Activity Detection in Massive MIMO Systems", ISIT2018 based on
- Kueng and PJ. "Robust nonnegative sparse recovery and the nullspace property of 0/1 measurements", 2018
- Adamczak, Litvak, Pajor, and Tomczak-Jaegermann "Restricted Isometry Property of Matrices with Independent Columns and Neighborly Polytopes by Random Sampling", 2011
- Götze, Sambale, and Sinulis. "Concentration inequalities for polynomials in α-sub-exponential random variables" arXiv 1903.05964
- Adamczak and Wolff. "Concentration inequalities for non-Lipschitz functions with bounded derivatives of higher order", 2019

> Peter Jung // TU Berlin, Germany [peter. jung@tu-berlin.de]

