Blind Sparse Recovery From Superimposed Non-Linear Sensor Measurements

Peter Jung (Technische Universität Berlin)

> SAMPTA 2017 Tallinn (Estonia) July 4, 2017

Collaborators/Funding

Martin Genzel

(Research Group Applied Functional Analysis @ TU Berlin)

Motivation & Measurement Model

Motivation

Environmental monitoring problems are of great importance in many practical applications.

Examples:

- Heat, Fire, and Seismic Monitoring
- Tsunami Early Warning Systems
- Structural Health Monitoring
- Medical Sensor Solutions

Environmental monitoring problems are of great importance in many practical applications.

Examples:

- Heat, Fire, and Seismic Monitoring
- Tsunami Early Warning Systems
- Structural Health Monitoring
- Medical Sensor Solutions
- distributed sensing & imperfect communication

Motivation

Environmental monitoring problems are of great importance in many practical applications.

Examples:

- Heat, Fire, and Seismic Monitoring
- Tsunami Early Warning Systems
- Structural Health Monitoring
- Medical Sensor Solutions
- distributed sensing & imperfect communication

Wireless sensor networks form a promising approach to many of those problems.

Wireless Sensor Networks

Example: Monitor the heat distribution of a server room

Wireless Sensor Networks

Spatially distributed sensors measure the temperature...

... and transmit their measurements simultaneously to a central receiver.

Wireless Sensor Networks

Challenge: Reconstruct the heat map!

Wireless Sensor Networks

The signal-of-interest is often (approximately) sparse in a known transform domain (e.g., Fourier or wavelets)

Unknown source vector

x0

Each sensor node takes linear measurements \rightsquigarrow "perspectives" (autonomous and ad hoc)

 $\langle \pmb{a}^j, \pmb{x}_0
angle$

Transmission of raw data (uncoded)

Non-linear distortion due to hardware imperfections and wireless channel $f_i(\langle \boldsymbol{a}^j, \boldsymbol{x}_0 \rangle)$

Superposition of signals at the central receiver + noise \rightsquigarrow Sample

$$y = \sum_{j=1}^{M} f_j(\langle \pmb{a}^j, \pmb{x}_0
angle) + e$$

Genzel & Jung (TU Berlin)

Blind Sparse Recovery From Superimposed N

Heuristics in the linear&coherent case: Enlarging the network improves the receive SNR! But, with nonlinearities...?

$$y = \sum_{j=1}^{M} f_j(\langle \boldsymbol{a}^j, \boldsymbol{x}_0 \rangle) + e$$

Genzel & Jung (TU Berlin)

Blind Sparse Recovery From Superimposed N

Why this setup?

- Heuristics in the linear&coherent case: Enlarging the network improves the receive SNR! But, with nonlinearities...?
- But we shall see that similar conclusion is true for the reconstruction of x₀ from non-linear measurements when M grows.

$$y = \sum_{j=1}^{M} f_j(\langle \pmb{a}^j, \pmb{x}_0 \rangle) + e$$

Why this setup?

- Heuristics in the linear&coherent case: Enlarging the network improves the receive SNR! But, with nonlinearities...?
- ▶ But we shall see that similar conclusion is true for the reconstruction of x₀ from non-linear measurements when *M* grows.
- Cope with phase instabilities \rightarrow noncoherent case

$$y = \sum_{j=1}^M f_j(\langle \pmb{a}^j, \pmb{x}_0
angle) + e$$

Model Setup and Problem Statement

Superimposed non-linearly distorted measurements:

$$y_i = \sum_{j=1}^M f_j(\langle \boldsymbol{a}_i^j, \boldsymbol{x}_0 \rangle) + e_i, \quad i = 1, \dots, m$$

- ▶ $x_0 \in \mathbb{R}^n$: unknown source vector (sparse)
- ▶ $a_i^j \in \mathbb{R}^n$: *i*-th measurement vector of the *j*-th senor

This talk:
$$m{a}_i^j \sim \mathcal{N}(m{0},m{I}_n)$$
 i.i.d.

- ▶ $f_j : \mathbb{R} \to \mathbb{R}$: scalar distortion (non-linear and possibly unknown)
- $\blacktriangleright \mathbb{E}[f_j(\langle \boldsymbol{a}_i^j, \boldsymbol{x}_0 \rangle)] = 0$
- e_i: independent measurement noise

Model Setup and Problem Statement

Superimposed non-linearly distorted measurements:

$$y_i = \sum_{j=1}^M f_j(\langle \boldsymbol{a}_i^j, \boldsymbol{x}_0 \rangle) + e_i, \quad i = 1, \dots, m$$

- ▶ $x_0 \in \mathbb{R}^n$: unknown source vector (sparse)
- ▶ $a_i^j \in \mathbb{R}^n$: *i*-th measurement vector of the *j*-th senor

This talk:
$$m{a}_i^j \sim \mathcal{N}(m{0},m{I}_n)$$
 i.i.d.

- ▶ $f_j : \mathbb{R} \to \mathbb{R}$: scalar distortion (non-linear and possibly unknown)
- $\blacktriangleright \mathbb{E}[f_j(\langle \boldsymbol{a}_i^j, \boldsymbol{x}_0 \rangle)] = 0$
- e_i: independent measurement noise

Model Setup and Problem Statement

Superimposed non-linearly distorted measurements:

$$y_i = \sum_{j=1}^M f_j(\langle \boldsymbol{a}_i^j, \boldsymbol{x}_0 \rangle) + e_i, \quad i = 1, \dots, m$$

- ▶ $x_0 \in \mathbb{R}^n$: unknown source vector (sparse)
- ▶ $a_i^j \in \mathbb{R}^n$: *i*-th measurement vector of the *j*-th senor

This talk:
$$m{a}_i^j \sim \mathcal{N}(m{0}, m{I}_n)$$
 i.i.d.

- $f_j : \mathbb{R} \to \mathbb{R}$: scalar distortion (non-linear and possibly unknown)
- $\blacktriangleright \mathbb{E}[f_j(\langle \boldsymbol{a}_i^j, \boldsymbol{x}_0 \rangle)] = 0$
- e_i: independent measurement noise

Can we recover \mathbf{x}_0 from $\{(\mathbf{a}_i^1, \ldots, \mathbf{a}_i^M; y_i)\}_{i=1...m}$?

How many measurements m do we need? And what is the impact of the sensor count M?

The Direct Method

Key Idea: Mimicking the Linear Case

$$y_i = \sum_{j=1}^M f_j(\langle \boldsymbol{a}_i^j, \boldsymbol{x}_0 \rangle) + e_i, \quad i = 1, \dots, m$$

▶ In the linear case $(f_j = \text{Id})$, we have $y_i = \langle \sum_{j=1}^M a_i^j, x_0 \rangle + e_i$.

Key Idea: Mimicking the Linear Case

$$y_i = \sum_{j=1}^M f_j(\langle \boldsymbol{a}_i^j, \boldsymbol{x}_0 \rangle) + e_i, \quad i = 1, \dots, m$$

- ▶ In the linear case $(f_j = \text{Id})$, we have $y_i = \langle \sum_{j=1}^{M} a_i^j, x_0 \rangle + e_i$.
- Idea: Consider superimposed measurement vectors

$$\boldsymbol{a}_i := \sum_{j=1}^M \boldsymbol{a}_i^j, \quad i = 1, \dots, m,$$

and just solve the vanilla Lasso:

$$\min_{oldsymbol{x} \in \mathbb{R}^n} \; \sum_{i=1}^m (y_i - \langle oldsymbol{a}_i, oldsymbol{x}
angle)^2 \;\;\;$$
 subject to $\|oldsymbol{x}\|_1 \leq R$

Key Idea: Mimicking the Linear Case

$$y_i = \sum_{j=1}^M f_j(\langle \boldsymbol{a}_i^j, \boldsymbol{x}_0 \rangle) + e_i, \quad i = 1, \dots, m$$

- ▶ In the linear case $(f_j = Id)$, we have $y_i = \langle \sum_{j=1}^{M} a_i^j, x_0 \rangle + e_i$.
- Idea: Consider superimposed measurement vectors

$$\boldsymbol{a}_i \coloneqq \sum_{j=1}^M \boldsymbol{a}_i^j, \quad i=1,\ldots,m,$$

and just solve the vanilla Lasso:

$$\min_{m{x}\in\mathbb{R}^n}\;\sum_{i=1}^m(y_i-\langlem{a}_i,m{x}
angle)^2$$
 subject to $\|m{x}\|_1\leq R$

We "fool" the Lasso by fitting a linear ansatz to non-linear measurements. Can such an approach work?

•

Definition (The Mismatch Parameters)

For each node $j = 1, \ldots, M$, we define the scaling parameter

$$\mu_j := \mathbb{E}[f_j(g) \cdot g], \quad g \sim \mathcal{N}(0, 1),$$

and the mean scaling parameter

$$\mu = \frac{1}{M} \sum_{j=1}^{M} \mu_j \; .$$

The deviation parameter is given by

$$\sigma^2 := \frac{1}{M} \sum_{j=1}^{M} \|f_j(g) - \mu g\|_{\psi_2}^2, \quad g \sim \mathcal{N}(0, 1).$$

- μ_j measures how well "aligns" f_j to ld in expectation.
- If $\|\mathbf{x}_0\|_2 = 1$, we have $g := \langle \mathbf{a}_i^j, \mathbf{x}_0 \rangle \sim \mathcal{N}(0, 1)$.

This concept originates from Plan and Vershynin (2016) and some extensions by G. (2017).

Let \mathbf{x}_0 be s-sparse, $\|\mathbf{x}_0\|_2 = 1$, and $e_i \sim \mathcal{N}(0, \nu^2)$. For every $\delta \in (0, 1]$, the following holds true with probability at least $1 - 5 \exp(-C\delta^2 m)$: If

$$m \gtrsim \delta^{-2} s \log(\frac{2n}{s}),$$

then any minimizer $\hat{\mathbf{x}} \in \mathbb{R}^n$ of the Lasso with $R = \|\mu \mathbf{x}_0\|_1$ satisfies

$$\|\hat{\mathbf{x}} - \mu \mathbf{x}_0\|_2 \le (\sigma^2 + \frac{\nu^2}{M})^{1/2} \cdot \delta$$
.

$$\mu = \frac{1}{M} \sum_{j=1}^{M} \mu_j, \qquad \sigma^2 := \frac{1}{M} \sum_{j=1}^{M} \|f_j(g) - \mu g\|_{\psi_2}^2$$

$$\hat{\boldsymbol{x}} = \operatorname*{argmin}_{\boldsymbol{x} \in \mathbb{R}^n} \sum_{i=1}^m (y_i - \langle \boldsymbol{a}_i, \boldsymbol{x}
angle)^2$$
 subject to $\|\boldsymbol{x}\|_1 \leq R$

Let \mathbf{x}_0 be s-sparse, $\|\mathbf{x}_0\|_2 = 1$, and $e_i \sim \mathcal{N}(0, \nu^2)$. For every $\delta \in (0, 1]$, the following holds true with probability at least $1 - 5 \exp(-C\delta^2 m)$: If

 $m \gtrsim \delta^{-2} s \log(\frac{2n}{s}),$

then any minimizer $\hat{\mathbf{x}} \in \mathbb{R}^n$ of the Lasso with $R = \|\mu \mathbf{x}_0\|_1$ satisfies

$$\|\hat{\mathbf{x}} - \mu \mathbf{x}_0\|_2 \le (\sigma^2 + \frac{\nu^2}{M})^{1/2} \cdot \delta$$
.

Recovery becomes feasible if $m \gtrsim s \log(\frac{2n}{s})!$

Let \mathbf{x}_0 be s-sparse, $\|\mathbf{x}_0\|_2 = 1$, and $e_i \sim \mathcal{N}(0, \nu^2)$. For every $\delta \in (0, 1]$, the following holds true with probability at least $1 - 5 \exp(-C\delta^2 m)$: If

$$m \gtrsim \delta^{-2} s \log(\frac{2n}{s}),$$

then any minimizer $\hat{\mathbf{x}} \in \mathbb{R}^n$ of the Lasso with $R = \|\mu \mathbf{x}_0\|_1$ satisfies

$$\|\hat{\mathbf{x}} - \mu \mathbf{x}_0\|_2 \le (\sigma^2 + \frac{\nu^2}{M})^{1/2} \cdot \delta$$
.

Recovery becomes feasible if $m \gtrsim s \log(\frac{2n}{s})!$

► The non-linearities f_j and the node count M affect the error bound only in terms of the rescaling factor μ and the variance σ^2 .

Let \mathbf{x}_0 be s-sparse, $\|\mathbf{x}_0\|_2 = 1$, and $e_i \sim \mathcal{N}(0, \nu^2)$. For every $\delta \in (0, 1]$, the following holds true with probability at least $1 - 5 \exp(-C\delta^2 m)$: If

$$m \gtrsim \delta^{-2} s \log(\frac{2n}{s}),$$

then any minimizer $\hat{\mathbf{x}} \in \mathbb{R}^n$ of the Lasso with $R = \|\mu \mathbf{x}_0\|_1$ satisfies

$$\|\hat{\mathbf{x}} - \mu \mathbf{x}_0\|_2 \le (\sigma^2 + \frac{\nu^2}{M})^{1/2} \cdot \delta$$
.

Recovery becomes feasible if $m \gtrsim s \log(\frac{2n}{s})!$

- ► The non-linearities f_j and the node count M affect the error bound only in terms of the rescaling factor μ and the variance σ^2 .
- Even in the nonlinear case: Enlarging the sensor network indeed helps to improve the SNR!

Is That the End of the Story?

$$\hat{\boldsymbol{x}} = \operatorname*{argmin}_{\boldsymbol{x} \in \mathbb{R}^n} \sum_{i=1}^m (y_i - \langle \boldsymbol{a}_i, \boldsymbol{x} \rangle)^2$$
 subject to $\|\boldsymbol{x}\|_1 \leq R$

$$m \gtrsim \delta^{-2} s \log(rac{2n}{s}) \quad \Rightarrow \quad \|\hat{\pmb{x}} - \mu \pmb{x}_0\|_2 \le (\sigma^2 + rac{
u^2}{M})^{1/2} \cdot \delta$$

- Use the sample complexity
- 🙂 Fast & Simple
- No knowledge of the network configuration required

Sails to work if $\mu = \frac{1}{M} \sum_{j=1}^{M} \mu_j \approx 0$

Is That the End of the Story?

$$\hat{\boldsymbol{x}} = \operatorname*{argmin}_{\boldsymbol{x} \in \mathbb{R}^n} \sum_{i=1}^m (y_i - \langle \boldsymbol{a}_i, \boldsymbol{x} \rangle)^2$$
 subject to $\|\boldsymbol{x}\|_1 \leq R$

$$m\gtrsim \delta^{-2}s\log(rac{2n}{s}) \quad \Rightarrow \quad \|\hat{\pmb{x}}-\mu\pmb{x}_0\|_2\leq (\sigma^2+rac{
u^2}{M})^{1/2}\cdot\delta$$

- ☺ Low sample complexity
- 🙂 Fast & Simple
- No knowledge of the network configuration required

Due to non-coherent transmission, the non-linearities often take the form

$$f_j(v) = h_j \cdot f(v)$$

with sign (h_j) unknown.

 \overleftrightarrow Fails to work if $\mu = \frac{1}{M} \sum_{j=1}^{M} \mu_j \approx 0$

The Lifting Method

Model:
$$y_i = \sum_{j=1}^M f_j(\langle \boldsymbol{a}_i^j, \boldsymbol{x}_0 \rangle) + e_i, \quad i = 1, \dots, m$$

$$\min_{\substack{\boldsymbol{x}^1,\ldots,\boldsymbol{x}^M\\\in\mathbb{R}^n}} \sum_{i=1}^m \left(y_i - \sum_{j=1}^M \langle \boldsymbol{a}_i^j, \boldsymbol{x}^j \rangle \right)^2 \quad \text{subject to } \left\| [\boldsymbol{x}^1 \ldots \boldsymbol{x}^M] \right\|_{1,2} \le R$$

• Every node *j* is fitted individually by $\mathbf{x}^j \mapsto \langle \mathbf{a}_i^j, \mathbf{x}^j \rangle$.

• The $\ell^{1,2}$ -norm

$$\|[\mathbf{x}^1 \dots \mathbf{x}^M]\|_{1,2} := \sum_{k=1}^n \Big(\sum_{j=1}^M ([\mathbf{x}^j]_k)^2\Big)^{1/2}$$

"couples" all vectors $\mathbf{x}^1, \ldots, \mathbf{x}^M$, but does not enforce equal signs.

Model:
$$y_i = \sum_{j=1}^M f_j(\langle \boldsymbol{a}_i^j, \boldsymbol{x}_0 \rangle) + e_i, \quad i = 1, \dots, m$$

$$\min_{\substack{\boldsymbol{x}^1,\ldots,\boldsymbol{x}^M\\\in\mathbb{R}^n}}\sum_{i=1}^m \left(y_i - \sum_{j=1}^M \langle \boldsymbol{a}_i^j, \boldsymbol{x}^j \rangle\right)^2 \quad \text{subject to } \left\| [\boldsymbol{x}^1 \ldots \boldsymbol{x}^M] \right\|_{1,2} \le R$$

- Every node *j* is fitted individually by $\mathbf{x}^j \mapsto \langle \mathbf{a}_i^j, \mathbf{x}^j \rangle$.
- The $\ell^{1,2}$ -norm

$$\|[\mathbf{x}^1 \dots \mathbf{x}^M]\|_{1,2} := \sum_{k=1}^n \Big(\sum_{j=1}^M ([\mathbf{x}^j]_k)^2\Big)^{1/2}$$

"couples" all vectors $\mathbf{x}^1, \ldots, \mathbf{x}^M$, but does not enforce equal signs.

Model:
$$y_i = \sum_{j=1}^M f_j(\langle \boldsymbol{a}_i^j, \boldsymbol{x}_0 \rangle) + e_i, \quad i = 1, \dots, m$$

$$\min_{\substack{\boldsymbol{x}^1,\ldots,\boldsymbol{x}^M\\\in\mathbb{R}^n}} \sum_{i=1}^m \left(y_i - \sum_{j=1}^M \langle \boldsymbol{a}^j_i, \boldsymbol{x}^j \rangle \right)^2 \text{ subject to } \left\| [\boldsymbol{x}^1 \ldots \boldsymbol{x}^M] \right\|_{1,2} \le R$$

• Every node *j* is fitted individually by $\mathbf{x}^j \mapsto \langle \mathbf{a}^j_i, \mathbf{x}^j \rangle$.

• The $\ell^{1,2}$ -norm

$$\|[\mathbf{x}^1 \dots \mathbf{x}^M]\|_{1,2} := \sum_{k=1}^n \Big(\sum_{j=1}^M ([\mathbf{x}^j]_k)^2\Big)^{1/2}$$

"couples" all vectors $\mathbf{x}^1, \ldots, \mathbf{x}^M$, but does not enforce equal signs.

Model:
$$y_i = \sum_{j=1}^M f_j(\langle \boldsymbol{a}_i^j, \boldsymbol{x}_0 \rangle) + e_i, \quad i = 1, \dots, m$$

$$\min_{\boldsymbol{X} \in \mathbb{R}^{n \times M}} \sum_{i=1}^{m} \left(y_i - \langle \boldsymbol{A}_i, \boldsymbol{X} \rangle_{\mathsf{HS}} \right)^2 \text{ subject to } \left\| \boldsymbol{X} \right\|_{1,2} \leq R$$

• Every node *j* is fitted individually by $\mathbf{x}^j \mapsto \langle \mathbf{a}^j_i, \mathbf{x}^j \rangle$.

► The ℓ^{1,2}-norm

$$\|[\mathbf{x}^1 \dots \mathbf{x}^M]\|_{1,2} := \sum_{k=1}^n \Big(\sum_{j=1}^M ([\mathbf{x}^j]_k)^2\Big)^{1/2}$$

"couples" all vectors $\mathbf{x}^1, \ldots, \mathbf{x}^M$, but does not enforce equal signs.

• We are actually working in the matrix space $\mathbb{R}^{n \times M}$:

$$\boldsymbol{A}_i := [\boldsymbol{a}_i^1 \dots \boldsymbol{a}_i^M], \qquad \boldsymbol{X} := [\boldsymbol{x}^1 \dots \boldsymbol{x}^M]$$

 \rightsquigarrow Higher computational burden

Genzel & Jung (TU Berlin) Blind Sparse Recovery From Superimposed N

Ţ

Theorem (Genzel & J., 2017)

Let \mathbf{x}_0 be s-sparse, $\|\mathbf{x}_0\|_2 = 1$, and $e_i \sim \mathcal{N}(0, \nu^2)$. For every $\delta \in (0, 1]$, the following holds true with probability at least $1 - 5 \exp(-C\delta^2 m)$: If

$$m \gtrsim \delta^{-2} s \max\{M, \log(\frac{2n}{s})\},\$$

then any minimizer $[\hat{\mathbf{x}}^1 \dots \hat{\mathbf{x}}^M] \in \mathbb{R}^{n \times M}$ of the Group-Lasso with $R = \|[\mu_1 \mathbf{x}_0 \dots \mu_M \mathbf{x}_0]\|_{1,2}$ satisfies

$$\left(\frac{1}{M}\sum_{j=1}^{M}\|\hat{\mathbf{x}}^{j}-\mu_{j}\mathbf{x}_{0}\|_{2}^{2}\right)^{1/2} \leq (\tilde{\sigma}^{2}+\frac{\nu^{2}}{M})^{1/2}\cdot\delta$$

$$\mu_{j} := \mathbb{E}[f_{j}(g) \cdot g], \qquad \tilde{\sigma}^{2} := \frac{1}{M} \sum_{j=1}^{M} \|f_{j}(g) - \mu_{j}g\|_{\psi_{2}}^{2}$$
$$\min_{\substack{\mathbf{x}^{1}, \dots, \mathbf{x}^{M} \\ \in \mathbb{R}^{n}}} \sum_{i=1}^{m} \left(y_{i} - \sum_{j=1}^{M} \langle \boldsymbol{a}_{i}^{j}, \boldsymbol{x}^{j} \rangle \right)^{2} \quad \text{subject to } \left\| [\boldsymbol{x}^{1} \dots \boldsymbol{x}^{M}] \right\|_{1,2} \leq R$$

Ţ

Theorem (Genzel & J., 2017)

Let \mathbf{x}_0 be s-sparse, $\|\mathbf{x}_0\|_2 = 1$, and $e_i \sim \mathcal{N}(0, \nu^2)$. For every $\delta \in (0, 1]$, the following holds true with probability at least $1 - 5 \exp(-C\delta^2 m)$: If

$$m \gtrsim \delta^{-2} s \max\{M, \log(\frac{2n}{s})\},\$$

then any minimizer $[\hat{\mathbf{x}}^1 \dots \hat{\mathbf{x}}^M] \in \mathbb{R}^{n \times M}$ of the Group-Lasso with $R = \|[\mu_1 \mathbf{x}_0 \dots \mu_M \mathbf{x}_0]\|_{1,2}$ satisfies

$$\left(\frac{1}{M}\sum_{j=1}^{M}\|\hat{\mathbf{x}}^{j}-\mu_{j}\mathbf{x}_{0}\|_{2}^{2}\right)^{1/2} \leq (\tilde{\sigma}^{2}+\frac{\nu^{2}}{M})^{1/2}\cdot\delta$$

$$\mu_{j} := \mathbb{E}[f_{j}(g) \cdot g], \qquad \tilde{\sigma}^{2} := \frac{1}{M} \sum_{j=1}^{M} \|f_{j}(g) - \mu_{j}g\|_{\psi_{2}}^{2}$$
$$\min_{\substack{\mathbf{x}^{1}, \dots, \mathbf{x}^{M} \\ \in \mathbb{R}^{n}}} \sum_{i=1}^{m} \left(y_{i} - \sum_{j=1}^{M} \langle \boldsymbol{a}_{i}^{j}, \boldsymbol{x}^{j} \rangle \right)^{2} \text{ subject to } \left\| [\boldsymbol{x}^{1} \dots \boldsymbol{x}^{M}] \right\|_{1,2} \leq R$$

Let \mathbf{x}_0 be s-sparse, $\|\mathbf{x}_0\|_2 = 1$, and $e_i \sim \mathcal{N}(0, \nu^2)$. For every $\delta \in (0, 1]$, the following holds true with probability at least $1 - 5 \exp(-C\delta^2 m)$: If

$$m \gtrsim \delta^{-2} s \max\{M, \log(\frac{2n}{s})\},\$$

then any minimizer $[\hat{\mathbf{x}}^1 \dots \hat{\mathbf{x}}^M] \in \mathbb{R}^{n \times M}$ of the Group-Lasso with $R = \|[\mu_1 \mathbf{x}_0 \dots \mu_M \mathbf{x}_0]\|_{1,2}$ satisfies

$$\left(\frac{1}{M}\sum_{j=1}^{M}\|\hat{\mathbf{x}}^{j}-\mu_{j}\mathbf{x}_{0}\|_{2}^{2}\right)^{1/2} \leq (\tilde{\sigma}^{2}+\frac{\nu^{2}}{M})^{1/2} \cdot \delta$$

Recovery becomes feasible if $m \gtrsim s \max\{M, \log(\frac{2n}{s})\}$!

• Every \hat{x}^j approximates rescaled x_0 even if $\mu = \frac{1}{M} \sum_{j=1}^{M} \mu_j \approx 0$, ...

Let \mathbf{x}_0 be s-sparse, $\|\mathbf{x}_0\|_2 = 1$, and $e_i \sim \mathcal{N}(0, \nu^2)$. For every $\delta \in (0, 1]$, the following holds true with probability at least $1 - 5 \exp(-C\delta^2 m)$: If

$$m \gtrsim \delta^{-2} s \max\{M, \log(\frac{2n}{s})\},\$$

then any minimizer $[\hat{\mathbf{x}}^1 \dots \hat{\mathbf{x}}^M] \in \mathbb{R}^{n \times M}$ of the Group-Lasso with $R = \|[\mu_1 \mathbf{x}_0 \dots \mu_M \mathbf{x}_0]\|_{1,2}$ satisfies

$$\left(\frac{1}{M}\sum_{j=1}^{M}\|\hat{\boldsymbol{x}}^{j}-\mu_{j}\boldsymbol{x}_{0}\|_{2}^{2}\right)^{1/2} \leq (\tilde{\sigma}^{2}+\frac{\nu^{2}}{M})^{1/2}\cdot\delta$$

Recovery becomes feasible if $m \gtrsim s \max\{M, \log(\frac{2n}{s})\}$!

- Every \hat{x}^j approximates rescaled x_0 even if $\mu = \frac{1}{M} \sum_{j=1}^{M} \mu_j \approx 0, ...$
- ... but the sample complexity now grows linearly in M.
- rule for sensor count: $M \sim log(2n/s)$.

Direct Method

- ☺ Low sample complexity
- 🙂 Fast & Simple
- No knowledge of the network configuration required

Cannot deal with $\mu \approx 0$

Lifting Method

- ⇒ Can deal with $\mu \approx 0$ (~ non-coherent transmission)
- Allows to learn about the network configuration ("bilinear" problem)

 \bigcirc Higher sample complexity for large networks $O(s \cdot M)$

😟 Slower

Direct Method

- ☺ Low sample complexity
- 🙂 Fast & Simple
- No knowledge of the network configuration required

Cannot deal with $\mu \approx 0$

Lifting Method

- \bigcirc Can deal with $\mu \approx 0$ (\sim non-coherent transmission)
- Allows to learn about the network configuration ("bilinear" problem)

Higher sample complexity for large networks $O(s \cdot M)$

😟 Slower

\Rightarrow The direct approach should be preferred unless $\mu pprox 0$.

Can we have the best of both worlds?

• The Hybrid Method

Allows to incorporate prior knowledge of the sensor configurations

$$oldsymbol{b}_i^k \coloneqq \sum_{j=1}^M c_{j,k}oldsymbol{a}_i^j, \quad k=1,\ldots,M'$$

- Sub-Gaussian Measurements
- Imperfect Tuning

Recovery if the Lasso parameter R was not perfectly chosen \sim The error rate may drop down to $O(m^{-1/4})$

Stability and Robustness

Different types of noise and (compressible) source vectors

The proofs are based on a more general framework for convex recovery from non-linear observations. Let's conclude...

What to Take Home ...?

Some problems in wireless sensor networks can be modeled by superimposed non-linearly distorted measurements

$$y_i = \sum_{j=1}^M f_j(\langle \boldsymbol{a}_i^j, \boldsymbol{x}_0 \rangle) + e_i, \quad i = 1, \dots, m.$$

- Recovery is often feasible with a very few measurements ...
- ... without knowing the exact model configuration (f_1, \ldots, f_M) .

What to Take Home...?

$$y_i = \sum_{j=1}^M f_j(\langle \boldsymbol{a}_i^j, \boldsymbol{x}_0 \rangle) + e_i, \quad i = 1, \dots, m.$$

Recovery is often feasible with a very few measurements ...

• ... without knowing the exact model configuration (f_1, \ldots, f_M) .

But there is still a lot of work to do!

Structured measurements?

Sub-Gaussians do not always reflect real-world applications.

Non-convex recovery?

Breaking the complexity barrier: $O(s \cdot M) \rightarrow O(s + M)$ related to bilinear inverse problems with sparsity priors!

THANK YOU FOR YOUR ATTENTION!

References

M. Genzel and P. Jung

Recovering Structured Data From Superimposed Non-Linear Measurements. In preparation, 2017.

M. Genzel and P. Jung

Blind Sparse Recovery From Superimposed Non-Linear Sensor Measurements. *Proceedings of SampTA 2017.*

M. Genzel

A Unified Framework for Convex Recovery From Non-Linear Observations. In preparation, 2017.

M. Genzel

High-Dimensional Estimation of Structured Signals From Non-Linear Observations With General Convex Loss Functions.

IEEE Trans. Inf. Theory 63.3 (2017), 1601–1619.

Low- or High-Quality Sensors?

