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© The Direct Method
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Motivation -l.s

Environmental monitoring problems are of great
importance in many practical applications.
Examples:
» Heat, Fire, and Seismic Monitoring
» Tsunami Early Warning Systems
» Structural Health Monitoring

» Medical Sensor Solutions
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Motivation -I.E

Environmental monitoring problems are of great
importance in many practical applications.
Examples:
» Heat, Fire, and Seismic Monitoring
» Tsunami Early Warning Systems
» Structural Health Monitoring

» Medical Sensor Solutions

» distributed sensing & imperfect
communication

Wireless sensor networks form a promising
approach to many of those problems.
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Wireless Sensor Networks -I.E

Example: Monitor the heat distribution of a server room
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Wireless Sensor Networks -I.E

Spatially distributed sensors measure the temperature...
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Wireless Sensor Networks -I.E

. and transmit their measurements simultaneously to a central receiver.
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Wireless Sensor Networks -I.E

Challenge: Reconstruct the heat map!

-MTm = Heat map
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Wireless Sensor Networks -I.E

The signal-of-interest is often (approximately) sparse
in a known transform domain (e.g., Fourier or wavelets)

-MTm = Heat map
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Towards a Measurement Model... -I.E

Unknown source vector

X0
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Towards a Measurement Model...

ey P

@\K kﬁj ﬁ ﬁ

Each sensor node takes linear measurements ~ “perspectives”

(autonomous and ad hoc)

(a’, X0>
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Towards a Measurement Model... -I.E

(7

f((a', x0)) (a%, xo)

Y ;
— (2™, )

Transmission of raw data (uncoded)
Non-linear distortion due to hardware imperfections and wireless channel

fi((@, %))
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Towards a Measurement Model... -I.E

- E\ <31,X0> "E%
= \
f((a* x0)) ] (2%, xo)
/M o)

e
o

Superposition of signals at the central receiver + noise ~ Sample

M .
y = fi({@.x)) +e
j=1
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Towards a Measurement Model... -l.s

Why this setup?

» Heuristics in the linear&coherent case: Enlarging the
network improves the receive SNR! But, with
nonlinearities. .. ?

M .
y = fi({@.x)) +e

j=1
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Towards a Measurement Model...

Why this setup?

?

» Heuristics in the linear&coherent case: Enlarging the
network improves the receive SNR! But, with
nonlinearities. . .

» But we shall see that similar conclusion is true for the
reconstruction of xg from non-linear measurements
when M grows.

y=
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Towards a Measurement Model... -l.s

Why this setup?

» Heuristics in the linear&coherent case: Enlarging the
network improves the receive SNR! But, with
nonlinearities. .. ?

» But we shall see that similar conclusion is true for the
reconstruction of xg from non-linear measurements
when M grows.

» Cope with phase instabilities — noncoherent case

M .
y = fi({@.x)) +e

J=1
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Model Setup and Problem Statement r

Superimposed non-linearly distorted measurements:

yi=Y M f((alxo)) +e, i=1,....m

» xp € R™ unknown source vector (sparse)

af-. € R™ j-th measurement vector of the j-th senor

v

This talk: a ~ N(0,1,) i.id.

v

fi: R — R: scalar distortion (non-linear and possibly unknown)

E[f((af, )] = 0

e;: independent measurement noise

v

v
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Superimposed non-linearly distorted measurements:

yi=Y M f((alxo)) +e, i=1,....m

» xp € R™ unknown source vector (sparse)

af-. € R™ j-th measurement vector of the j-th senor

v

This talk: a ~ N(0,1,) i.id.

v

fi: R — R: scalar distortion (non-linear and possibly unknown)

E[f((af, )] = 0

e;: independent measurement noise

v

v

Can we recover xo from {(a},...,aM:y)} ic1.m?

How many measurements m do we need?
And what is the impact of the sensor count M?
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The Direct Method



Key Idea: Mimicking the Linear Case W

yi=YM (@, x)+e, i=1...m

» In the linear case (f; = Id), we have y; = <Zjl\i
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Key Idea: Mimicking the Linear Case W

yi=YM (@, x)+e, i=1...m

> In the linear case (f; = Id), we have y; = <ZJ’-\11 a{,x0> + €.

» |dea: Consider superimposed measurement vectors
M P
a,-.—zjzla{, i=1,...,m,

and just solve the vanilla Lasso:

m

min (v; — (ai,x))? subject to ||x|l1 < R
x€R" =1
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Key Idea: Mimicking the Linear Case W

yi=YM (@, x)+e, i=1...m

. M i
> In the linear case (f; = Id), we have y; = (3°;7; &}, x0) + €;.
» |dea: Consider superimposed measurement vectors
Mo
a=5):,a, i=1..,m,

j=1

and just solve the vanilla Lasso:

m

min (v; — (ai,x))? subject to ||x|l1 < R
x€R" =1

We “fool” the Lasso by fitting a linear ansatz
to non-linear measurements. Can such an approach work?
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“Model Mismatch = Noise”

Definition (The Mismatch Parameters)

For each node j =1,..., M, we define the scaling parameter
nj =E[fi(g)-gl, & ~ N(0,1),

and the mean scaling parameter

_ 1M
=M 2uj=1Hj -

The deviation parameter is given by

0% = LM IIfi(e) - nel’,, &~N(0,1).

» 1j measures how well “aligns” f; to Id in expectation.

> If | xol|2 = 1, we have g := (@, xo) ~ N(0,1).

This concept originates from Plan and Vershynin (2016)
and some extensions by G. (2017).

Genzel & Jung (TU Berlin) Blind Sparse Recovery From Superimposed N SAMPTA 2017 8 /16



Recovery via the Direct Method W

Theorem (Genzel & J., 2017)

Let x¢ be s-sparse,

xoll2 =1, and e; ~ N(0,12). For every § € (0,1],
the following holds true with probability at least 1 — 5exp(—Cd%m): If

m 2 6 2slog(22),
then any minimizer X € R" of the Lasso with R = ||uxol||1 satisfies

A 2
1% = uxoll2 < (0 + 57)"/% -6 .

M . M
p=g il 0= gy ot [Ifi(g) — nell?,
m
X = argmin Z(y,— — (a,-,x>)2 subject to ||x||1 < R
x€eR" i—1
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Recovery via the Direct Method W

Theorem (Genzel & J., 2017)

Let xg be s-sparse, ||xo||2 = 1, and e; ~ N(0,v2). For every § € (0,1],
the following holds true with probability at least 1 — 5exp(—Cd°m): If

-2 2
m 2 6 “slog(<),
then any minimizer X € R" of the Lasso with R = ||uxol||1 satisfies

% — pxollz < (0% + )26

Recovery becomes feasible if m 2 s log(22)!
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Recovery via the Direct Method W

Theorem (Genzel & J., 2017)

Let x¢ be s-sparse,
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-2 2
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» The non-linearities f; and the node count M affect the error bound
only in terms of the rescaling factor 1 and the variance o2
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Recovery via the Direct Method W

Theorem (Genzel & J., 2017)

Let xg be s-sparse, ||xo||2 = 1, and e; ~ N(0,v2). For every § € (0,1],
the following holds true with probability at least 1 — 5exp(—Cd°m): If

-2 2
m 2 6 “slog(<),
then any minimizer X € R" of the Lasso with R = ||uxol||1 satisfies

~ V2
1% — pxoll2 < (02 + ¥5)H2 -5

Recovery becomes feasible if m 2 s log(22)!

» The non-linearities f; and the node count M affect the error bound
only in terms of the rescaling factor 1 and the variance o2

» Even in the nonlinear case: Enlarging the sensor network indeed helps
to improve the SNR!
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Is That the End of the Story? W

m

X = argmin Z(y,- — (a;,x))? subject to ||x]|; <R
X€R™ oy

m2 0 2slog(X) = ||%—pxoll2 < (62 + )20

© Low sample complexity @ Fails to work if

© Fast & Simple

© No knowledge of the network
configuration required

1M
1= g 2j=1 1 =0
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Is That the End of the Story? W

m

X = argmin Z(y,- — (a;,x))? subject to ||x]|; <R
X€R™ oy

m2 6 2slog(X) = [[%—pxola < (02 +57)V/20

© Low sample complexity @ Fails to work if

© Fast & Simple

© No knowledge of the network
configuration required

M
M:ﬁzj'zlﬂj%o

;<0 i >0
Due to non-coherent transmission, the ’ ’ )
non-linearities often take the form

fi(v) = hj- f(v)

with sign(h;) unknown.
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The Lifting Method



Key Idea: Treating Each Sensor Individually W

Model:y;:z,lj«a] 0)+e, i=1...,m

m M
bj oM, <R
xlr,;é; 2( JZ > subject to [|[x*...x"]|| , <

> Every node j is fitted individually by x/ s (a}, x/).

» The ¢12-norm

Y TR = 1422
H[X e X ]H1,2' Z(Z([X]k)>

k=1 j=1

“couples” all vectors x?,.
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Key Idea: Treating Each Sensor Individually W

Model:y;:z,lj«aj 0)+e, i=1...,m

m

M
m|n Z ( Z (a{,xj>>2 subject to H[x1 "'XM]”1,2 <R

g =1 j=1

> Every node J is fitted individually by x/ > (a/, x/).

» The ¢12-norm

n M 1/2
ot ox = 30 (S (10?)
k=1 j=1

“couples” all vectors x?,.
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Key Idea: Treating Each Sensor Individually

Model:y;:z,lj«a’ 0)+e, i=1...,m

L

mln i(

ER”

1M

N2
xJ>> subject to [[[x" ...

XM]HLQ =R

> Every node j is fitted individually by x/ s (a}, x/).

» The ¢12-norm

n

M
H[Xl"'XM]H1,2 ::Z ( ([xj]k)z)l/z
1

k=1 j=

“couples” all vectors x1,.
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Key Idea: Treating Each Sensor Individually W

Model:y;:z,lj«a] 0)+e, i=1...,m

m 2
Xer%inang (y,- = <Ai7X>HS) subject to HXH1,2 =R

» Every node j is fitted individually by x/ — <a{,xf).

» The ¢12-norm

1 M — & u J1 \2 1/2
It Ml = S (S (116%)
k=1 j=1

“couples” all vectors x1,

» We are actually working in the matrix space R"*M:

M

A = [a}...a)], X = [x'.. . xM]

~> Higher computational burden
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Recovery via the Lifting Method W

Theorem (Genzel & J., 2017)

Let xg be s-sparse,

xoll2 =1, and e; ~ N(0,v2). For every 6 € (0,1],
the following holds true with probability at least 1 — 5exp(—Cd°m): If

m > 6 2s max{M, Iog(z?”)},
then any minimizer [%'...%xM] € R™M of the Group-Lasso with

R = ||[p1xo - . . pmxXo]||l1,2 satisfies

, 1/2
M ~ 5 2
(%Ebﬁﬁxh—wﬁﬂa < (82 + 526

w=Elfi(g) gl, 5= 4 M) — mgl?,

m M
N
1minM Z (y,- — Z<a/j‘vxj>) subject to H[xl ... XM]H1,2 <R
Tepn =L =
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Recovery via the Lifting Method W
Theorem (Genzel & J., 2017)

Let xg be s-sparse,

xoll2 =1, and e; ~ N(0,22). For every § € (0,1],
the following holds true with probability at least 1 — 5exp(—Cd%m): If

m 2 6 2smax{M, log(22)},
then any minimizer [%* ... %M] € R™M of the Group-Lasso with

R = ||[p1xo - - . ppmxo)||1,2 satisfies

: 1/2
M| s I
(A_l/' 2j= 1% = quoH%) < (B4 TIN5

Recovery becomes feasible if m 2, s max{M, log(22)}/

> Every %/ approximates rescaled xo even if = inl pj =0,
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Recovery via the Lifting Method W
Theorem (Genzel & J., 2017)

Let xg be s-sparse,

xoll2 =1, and e; ~ N(0,22). For every § € (0,1],
the following holds true with probability at least 1 — 5exp(—Cd%m): If

m 2 6 2smax{M, log(22)},
then any minimizer [%* ... %M] € R™M of the Group-Lasso with

R = ||[p1xo - - . ppmxo)||1,2 satisfies

: 1/2
M e I
(A_l/' 2= 1% = quoH%) < (B4 TIN5

Recovery becomes feasible if m 2, s max{M, log(22)}/
> Every %/ approximates rescaled xo even if = inl pj =0,
» ... but the sample complexity now grows linearly in M.

> rule for sensor count: M ~ log(2n/s).
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Direct vs. Lifting W
Direct Method

Low sample complexity & Cannot deal with w0
Fast & Simple

No knowledge of the network
configuration required

©OO

Lifting Method

© Can deal with =0 ® Higher sample complexity
(~ non-coherent transmission) for large networks O(s - M)
© Allows to learn about the © Slower

network configuration
("bilinear” problem)
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Direct vs. Lifting W
Direct Method

Low sample complexity & Cannot deal with w0
Fast & Simple

No knowledge of the network
configuration required

©OO

Lifting Method

© Can deal with =0 ® Higher sample complexity
(~ non-coherent transmission) for large networks O(s - M)
© Allows to learn about the © Slower

network configuration
("bilinear” problem)

= The direct approach should be preferred unless ;1 ~ 0.
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Direct vs. Lifting

n=64, s=4, noisepower=-11.0 dB

= coherent (direct)
incoherent (lifting)

~ X
~ m=12 oy - - et
A5 AT e mEASE 1
T, T g
20 m=19| | | anan
0 5 10 15 20
M (number of sensors)

Genzel & Jung (TU Berlin) Blind Sparse Recovery From Superimposed N SAMPTA 2017

13/ 16



Direct vs. Lifting

n=64, s=4, noisepower=-11.0 dB

0
= coherent (direct)
incoherent (lifting)
,5 -
o
U-EJ- -10 F m=64 -
(%]
=
-15
-20
0

M (number of sensors)

Can we have the best of both worlds?
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Some Available Extensions -I.E

» The Hybrid Method

Allows to incorporate prior knowledge of the sensor configurations

bk :—ZJ lcjka/, k=1,...,M

1
» Sub-Gaussian Measurements

> Imperfect Tuning

Recovery if the Lasso parameter R was not perfectly chosen
~> The error rate may drop down to O(m~1/4)

» Stability and Robustness

Different types of noise and (compressible) source vectors

The proofs are based on a more general framework
for convex recovery from non-linear observations.
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Let’s conclude...



What to Take Home...? -I.E

» Some problems in wireless sensor networks can be modeled by
superimposed non-linearly distorted measurements

yi:Zj lj(<a] >)+ela i:1,...,m

> Recovery is often feasible with a very few measurements ...

» ... without knowing the exact model configuration (fi,..., fy).
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What to Take Home...? -I.E

» Some problems in wireless sensor networks can be modeled by
superimposed non-linearly distorted measurements

yi:Zj lj(<a] >)+ela i:1,...,m

> Recovery is often feasible with a very few measurements ...
» ... without knowing the exact model configuration (fi,..., fy).
But there is still a lot of work to do!

» Structured measurements?

Sub-Gaussians do not always reflect real-world applications.

» Non-convex recovery?
Breaking the complexity barrier: O(s- M) ~ O(s + M)

related to bilinear inverse problems with sparsity priors!
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Low- or High-Quality Sensors?
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