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Motivation

Environmental monitoring problems are of great
importance in many practical applications.

Examples:

I Heat, Fire, and Seismic Monitoring

I Tsunami Early Warning Systems

I Structural Health Monitoring

I Medical Sensor Solutions

I distributed sensing & imperfect
communication

Wireless sensor networks form a promising
approach to many of those problems.
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Wireless Sensor Networks

Example: Monitor the heat distribution of a server room
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Wireless Sensor Networks

Spatially distributed sensors measure the temperature...
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Wireless Sensor Networks

... and transmit their measurements simultaneously to a central receiver.
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Wireless Sensor Networks

Challenge: Reconstruct the heat map!
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Wireless Sensor Networks

The signal-of-interest is often (approximately) sparse
in a known transform domain (e.g., Fourier or wavelets)
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Towards a Measurement Model...

Unknown source vector

y =
M∑
j=1

fj(〈aj ,

x0

〉) + e
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Towards a Measurement Model...

...

Each sensor node takes linear measurements ; “perspectives”
(autonomous and ad hoc)

y =
M∑
j=1

fj(

〈aj , x0〉

) + e
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Towards a Measurement Model...

...

Transmission of raw data (uncoded)
Non-linear distortion due to hardware imperfections and wireless channel

y =
M∑
j=1

fj(〈aj , x0〉)

+ e
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Towards a Measurement Model...

...

Superposition of signals at the central receiver + noise ; Sample

y =
M∑
j=1

fj(〈aj , x0〉) + e
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Towards a Measurement Model...

Why this setup?

I Heuristics in the linear&coherent case: Enlarging the
network improves the receive SNR! But, with
nonlinearities. . . ?

I But we shall see that similar conclusion is true for the
reconstruction of x0 from non-linear measurements
when M grows.

I Cope with phase instabilities → noncoherent case

y =
M∑
j=1

fj(〈aj , x0〉) + e
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Model Setup and Problem Statement

Superimposed non-linearly distorted measurements:

yi =
∑M

j=1 fj(〈a
j
i , x0〉) + ei , i = 1, . . . ,m

I x0 ∈ Rn: unknown source vector (sparse)

I aj
i ∈ Rn: i-th measurement vector of the j-th senor

This talk: aj
i ∼ N (0, In) i.i.d.

I fj : R→ R: scalar distortion (non-linear and possibly unknown)

I E[fj(〈aj
i , x0〉)] = 0

I ei : independent measurement noise

Can we recover x0 from {(a1
i , . . . , aM

i ; yi)}i=1...m?

How many measurements m do we need?
And what is the impact of the sensor count M?
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The Direct Method



Key Idea: Mimicking the Linear Case

yi =
∑M

j=1 fj(〈a
j
i , x0〉) + ei , i = 1, . . . ,m

I In the linear case (fj = Id), we have yi = 〈
∑M

j=1 aj
i , x0〉+ ei .

I Idea: Consider superimposed measurement vectors

ai :=
∑M

j=1 aj
i , i = 1, . . . ,m,

and just solve the vanilla Lasso:

min
x∈Rn

m∑
i=1

(yi − 〈ai , x〉)2 subject to ‖x‖1 ≤ R

We “fool” the Lasso by fitting a linear ansatz
to non-linear measurements. Can such an approach work?
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“Model Mismatch = Noise”

Definition (The Mismatch Parameters)

For each node j = 1, . . . ,M, we define the scaling parameter

µj := E[fj(g) · g ], g ∼ N (0, 1),

and the mean scaling parameter

µ = 1
M

∑M
j=1 µj .

The deviation parameter is given by

σ2 := 1
M

∑M
j=1 ‖fj(g)− µg‖2

ψ2
, g ∼ N (0, 1).

I µj measures how well “aligns” fj to Id in expectation.

I If ‖x0‖2 = 1, we have g := 〈aj
i , x0〉 ∼ N (0, 1).

This concept originates from Plan and Vershynin (2016)
and some extensions by G. (2017).
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Recovery via the Direct Method

Theorem (Genzel & J., 2017)

Let x0 be s-sparse, ‖x0‖2 = 1, and ei ∼ N (0, ν2). For every δ ∈ (0, 1],
the following holds true with probability at least 1− 5 exp(−Cδ2m): If

m & δ−2s log( 2n
s ),

then any minimizer x̂ ∈ Rn of the Lasso with R = ‖µx0‖1 satisfies

‖x̂ − µx0‖2 ≤ (σ2 + ν2

M )1/2 · δ .

µ = 1
M

∑M
j=1 µj , σ2 := 1

M

∑M
j=1 ‖fj(g)− µg‖2

ψ2

x̂ = argmin
x∈Rn

m∑
i=1

(yi − 〈ai , x〉)2 subject to ‖x‖1 ≤ R
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then any minimizer x̂ ∈ Rn of the Lasso with R = ‖µx0‖1 satisfies

‖x̂ − µx0‖2 ≤ (σ2 + ν2

M )1/2 · δ .

Recovery becomes feasible if m & s log(2n
s

)!

I The non-linearities fj and the node count M affect the error bound
only in terms of the rescaling factor µ and the variance σ2.

I Even in the nonlinear case: Enlarging the sensor network indeed helps
to improve the SNR!
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Is That the End of the Story?

x̂ = argmin
x∈Rn

m∑
i=1

(yi − 〈ai , x〉)2 subject to ‖x‖1 ≤ R

m & δ−2s log( 2n
s ) ⇒ ‖x̂ −µx0‖2 ≤ (σ2 + ν2

M )1/2 · δ

, Low sample complexity

, Fast & Simple

, No knowledge of the network
configuration required

/ Fails to work if

µ = 1
M

∑M
j=1 µj ≈ 0

Due to non-coherent transmission, the
non-linearities often take the form

fj(v) = hj · f (v)

with sign(hj) unknown.
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The Lifting Method



Key Idea: Treating Each Sensor Individually

Model: yi =
∑M

j=1 fj(〈a
j
i , x0〉) + ei , i = 1, . . . ,m

min
x1,...,xM

∈Rn

m∑
i=1

(
yi −

M∑
j=1

〈aj
i , x

j〉
)2

subject to
∥∥[x1 . . . xM ]

∥∥
1,2
≤ R

I Every node j is fitted individually by x j 7→ 〈aj
i , x

j〉.
I The `1,2-norm ∥∥[x1 . . . xM ]

∥∥
1,2

:=
n∑

k=1

( M∑
j=1

([x j ]k)2
)1/2

“couples” all vectors x1, . . . , xM , but does not enforce equal signs.

I We are actually working in the matrix space Rn×M :

Ai := [a1
i . . . a

M
i ], X := [x1 . . . xM ]

; Higher computational burden
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Recovery via the Lifting Method

Theorem (Genzel & J., 2017)

Let x0 be s-sparse, ‖x0‖2 = 1, and ei ∼ N (0, ν2). For every δ ∈ (0, 1],
the following holds true with probability at least 1− 5 exp(−Cδ2m): If

m & δ−2s max{M, log( 2n
s )},

then any minimizer [x̂1 . . . x̂M ] ∈ Rn×M of the Group-Lasso with
R = ‖[µ1x0 . . . µMx0]‖1,2 satisfies(

1
M

∑M
j=1 ‖x̂ j − µjx0‖2

2

)1/2
≤ (σ̃2 + ν2

M )1/2 · δ .

µj := E[fj(g) · g ], σ̃2 := 1
M

∑M
j=1 ‖fj(g)− µjg‖2

ψ2

min
x1,...,xM

∈Rn

m∑
i=1

(
yi −

M∑
j=1

〈aj
i , x

j〉
)2

subject to
∥∥[x1 . . . xM ]

∥∥
1,2
≤ R
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Recovery via the Lifting Method

Theorem (Genzel & J., 2017)
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1
M
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2

)1/2
≤ (σ̃2 + ν2

M )1/2 · δ .

Recovery becomes feasible if m & s max{M , log(2n
s

)}!
I Every x̂ j approximates rescaled x0 even if µ = 1

M

∑M
j=1 µj ≈ 0, ...

I ... but the sample complexity now grows linearly in M.

I rule for sensor count: M ∼ log(2n/s).
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Direct vs. Lifting

Direct Method

, Low sample complexity

, Fast & Simple

, No knowledge of the network
configuration required

/ Cannot deal with µ ≈ 0

Lifting Method

, Can deal with µ ≈ 0
(; non-coherent transmission)

, Allows to learn about the
network configuration
(“bilinear” problem)

/ Higher sample complexity
for large networks O(s ·M)

/ Slower

⇒ The direct approach should be preferred unless µ ≈ 0.
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Direct vs. Lifting

Can we have the best of both worlds?
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Some Available Extensions

I The Hybrid Method

Allows to incorporate prior knowledge of the sensor configurations

bk
i :=

∑M
j=1 cj ,ka

j
i , k = 1, . . . ,M ′

I Sub-Gaussian Measurements

I Imperfect Tuning

Recovery if the Lasso parameter R was not perfectly chosen
; The error rate may drop down to O(m−1/4)

I Stability and Robustness

Different types of noise and (compressible) source vectors

The proofs are based on a more general framework
for convex recovery from non-linear observations.
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Let’s conclude...



What to Take Home...?

I Some problems in wireless sensor networks can be modeled by
superimposed non-linearly distorted measurements

yi =
∑M

j=1 fj(〈a
j
i , x0〉) + ei , i = 1, . . . ,m.

I Recovery is often feasible with a very few measurements ...

I ... without knowing the exact model configuration (f1, . . . , fM).

But there is still a lot of work to do!

I Structured measurements?

Sub-Gaussians do not always reflect real-world applications.

I Non-convex recovery?

Breaking the complexity barrier: O(s ·M) ; O(s + M)

related to bilinear inverse problems with sparsity priors!
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THANK YOU FOR
YOUR ATTENTION!
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Low- or High-Quality Sensors?
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