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Motivation

evolution of cellular mobile standards

3G (UMTS)

WiMAX in 2005 (OFDM = some TF signaling)

3G HSDPA+ in 2009 /

4G LTE in 2010 (OFDM) /

4.5G LTE Advanced in 2016 (OFDM) /

5G in 2020 //, ?

new term: waveforms

several EU projects (Phydyas, METIS, 5GNow, 5G-Fantastic. . . )

waveform challenges in 5G

support robust sporadic communication and asynchronous massive connectivity

robust against: time&frequency dispersions, asynchronous access, low-cost hardware

⇒ Using Weyl–Heisenberg structures for waveform design
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Outline
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Notation and Background
Time–frequency shifts and Spreading representation

time–frequency shifts πµ ∈ CN×N for µ ∈ PN := ZN × ZN acts on ONB {en}N−1
n=0

πµem := exp(i2πµ1m/N)em	µ2

Weyl commutation rule πµπν = exp(i2π[µ, ν]) · πνπµ
{πµ}µ∈PN is ONB for CN×N wrt 〈A,B〉 = tr (A∗B)/N.

spreading representation σ̂ = {σ̂µ}µ∈PN ∈ CN×N of matrix H ∈ CN×N

H =
∑
µ∈PN

〈πµ,H〉πµ =
∑
µ∈PN

σ̂µπµ

symbol σ = {σµ}µ∈PN ∈ CN×N is sympl. Fourier trafo σ = Fs σ̂ of σ̂.

A considerable simplified discrete description is:

r = Hs + z

where s, r , z ∈ CN and channel matrix H ∈ CN×N

Peter Jung, HIM16, finite WH workshop 4/1



Notation and Background
Time–frequency shifts and Spreading representation

time–frequency shifts πµ ∈ CN×N for µ ∈ PN := ZN × ZN acts on ONB {en}N−1
n=0

πµem := exp(i2πµ1m/N)em	µ2

Weyl commutation rule πµπν = exp(i2π[µ, ν]) · πνπµ
{πµ}µ∈PN is ONB for CN×N wrt 〈A,B〉 = tr (A∗B)/N.

spreading representation σ̂ = {σ̂µ}µ∈PN ∈ CN×N of matrix H ∈ CN×N

H =
∑
µ∈PN

〈πµ,H〉πµ =
∑
µ∈PN

σ̂µπµ

symbol σ = {σµ}µ∈PN ∈ CN×N is sympl. Fourier trafo σ = Fs σ̂ of σ̂.

A considerable simplified discrete description is:

r = Hs + z

where s, r , z ∈ CN and channel matrix H ∈ CN×N

Peter Jung, HIM16, finite WH workshop 4/1



Notation and Background
Time–frequency shifts and Spreading representation

time–frequency shifts πµ ∈ CN×N for µ ∈ PN := ZN × ZN acts on ONB {en}N−1
n=0

πµem := exp(i2πµ1m/N)em	µ2

Weyl commutation rule πµπν = exp(i2π[µ, ν]) · πνπµ
{πµ}µ∈PN is ONB for CN×N wrt 〈A,B〉 = tr (A∗B)/N.

spreading representation σ̂ = {σ̂µ}µ∈PN ∈ CN×N of matrix H ∈ CN×N

H =
∑
µ∈PN

〈πµ,H〉πµ =
∑
µ∈PN

σ̂µπµ

symbol σ = {σµ}µ∈PN ∈ CN×N is sympl. Fourier trafo σ = Fs σ̂ of σ̂.

A considerable simplified discrete description is:

r = Hs + z

where s, r , z ∈ CN and channel matrix H ∈ CN×N

Peter Jung, HIM16, finite WH workshop 4/1



Notation and Background
Time–frequency shifts and Spreading representation

time–frequency shifts πµ ∈ CN×N for µ ∈ PN := ZN × ZN acts on ONB {en}N−1
n=0

πµem := exp(i2πµ1m/N)em	µ2

Weyl commutation rule πµπν = exp(i2π[µ, ν]) · πνπµ
{πµ}µ∈PN is ONB for CN×N wrt 〈A,B〉 = tr (A∗B)/N.

spreading representation σ̂ = {σ̂µ}µ∈PN ∈ CN×N of matrix H ∈ CN×N

H =
∑
µ∈PN

〈πµ,H〉πµ =
∑
µ∈PN

σ̂µπµ

symbol σ = {σµ}µ∈PN ∈ CN×N is sympl. Fourier trafo σ = Fs σ̂ of σ̂.

A considerable simplified discrete description is:

r = Hs + z

where s, r , z ∈ CN and channel matrix H ∈ CN×N

Peter Jung, HIM16, finite WH workshop 4/1



Notation and Background
Time–frequency shifts and Spreading representation

time–frequency shifts πµ ∈ CN×N for µ ∈ PN := ZN × ZN acts on ONB {en}N−1
n=0

πµem := exp(i2πµ1m/N)em	µ2

Weyl commutation rule πµπν = exp(i2π[µ, ν]) · πνπµ
{πµ}µ∈PN is ONB for CN×N wrt 〈A,B〉 = tr (A∗B)/N.

spreading representation σ̂ = {σ̂µ}µ∈PN ∈ CN×N of matrix H ∈ CN×N

H =
∑
µ∈PN

〈πµ,H〉πµ =
∑
µ∈PN

σ̂µπµ

symbol σ = {σµ}µ∈PN ∈ CN×N is sympl. Fourier trafo σ = Fs σ̂ of σ̂.

A considerable simplified discrete description is:

r = Hs + z

where s, r , z ∈ CN and channel matrix H ∈ CN×N

Peter Jung, HIM16, finite WH workshop 4/1



Notation and Background
Time–frequency shifts and Spreading representation

time–frequency shifts πµ ∈ CN×N for µ ∈ PN := ZN × ZN acts on ONB {en}N−1
n=0

πµem := exp(i2πµ1m/N)em	µ2

Weyl commutation rule πµπν = exp(i2π[µ, ν]) · πνπµ
{πµ}µ∈PN is ONB for CN×N wrt 〈A,B〉 = tr (A∗B)/N.

spreading representation σ̂ = {σ̂µ}µ∈PN ∈ CN×N of matrix H ∈ CN×N

H =
∑
µ∈PN

〈πµ,H〉πµ =
∑
µ∈PN

σ̂µπµ

symbol σ = {σµ}µ∈PN ∈ CN×N is sympl. Fourier trafo σ = Fs σ̂ of σ̂.

A considerable simplified discrete description is:

r = Hs + z

where s, r , z ∈ CN and channel matrix H ∈ CN×N

Peter Jung, HIM16, finite WH workshop 4/1



Notation and Background
Typical wireless channels

impulse response h = F−1σ̂ ∈ CN×N is ht,τ =
∑N−1
µ1=0 e i2πµ1t/N σ̂(µ1,τ)

mobile channels are underspread: supp(σ̂) ⊂ U with |U| ≈ 0.01× N2, and sparse

but, poor timing synchronization, oscillator mismatch and phasenoise (“dirty RF”)
in multiuser scenarios effectively increase |U|.
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Notation and Background
Time–Frequency Signaling

Λ ⊂ P subgroup (lattice) generated by Λ = Z2×2.
Define |Λ| = N/card(Λ)

For fixed g , γ ∈ CN define Gabor sets {γn = πΛnγ}
and {gn = πΛng},

Transmission of data symbols {xn} ⊂ C using N samples {ym} through a channel
H ∈ CN×N with additive noise z :

ym = 〈gm,Hγm〉xm +
∑

n−m/∈SIC

〈gm,Hγn〉xn + 〈gm, z〉 = , + /

usually without “interference cancellation” → SIC = {(0, 0)}.
TF-density/spectral efficiency is 1/|Λ|.
OFDM & BFDM: Λ = diag(T ,F ) & (bi–)orthogonality
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“signal-to-noise-and-interference ratio”

SINR(g , γ, Λ) = E|,|2/E|/|2

relation to (g , γ, Λ)?

Can we find simple estimates for given scattering scenarios?

Peter Jung, HIM16, finite WH workshop 7/1



WSSUS Pulse Optimization w.r.t. to SINR

inst. SINR not practicable but second order changes slowly → WSSUS

E(σ̂) = 0 and E(σ̂µσ̂
∗
ν) = Cµδµ,ν with scattering prob. C ∈ RN×N

+

A(X ) :=
∑
µ Cµ · πµXπµ for X ∈ CN×N

Weyl–covariant, trace&pos-preserving, A(Id) = Id, A(X ∗) = A(X )∗,
AC ◦ AD = AD ◦ AC = AC∗D . . .

B(X ) :=
∑
λ∈Λ πλXπλ and D(X ) := σ2

z Id + (B ◦ A)(X ). Set Πγ = γγ∗:

SINR(g , γ, Λ) =
E|,|2

E|/|2 =
〈Πg ,A(Πγ)〉
〈Πg ,D(Πγ)〉

optimize with respect (g , γ) for fixed Λ:

max
g,γ

SINR(g , γ, Λ) = max
γ
λmax(A(Πγ)D(Πγ)−1)

is possible, at least locally, by alternating maximization (initialization, later. . . )
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WSSUS Pulse Optimization, Simplified

Consider the lower bound:

SINR(g , γ, Λ) ≥ E|,|2

σ2
z + Bγ − E|,|2

with Bessel constant Bγ of {γλ}λ∈Λ, i.e., ‖{〈γλ, x〉λ∈Λ}‖2
2 ≤ Bγ‖x‖2

2

Simplified Strategy. . . 1 2

¶ Maximize E|,|2 over (g , γ) for given C (TF localization step).

· Minimize Bγ over (Λ, γ) for fixed Λ

¸ Update g

1 Kozek& Molisch, “Nonorthogonals pulseshapes for multicarrier communications in doubly dispersive channels”, 1998
2 Jung& Wunder, “Iterative Pulse Shaping for Gabor Signaling in WSSUS channels”, 2004
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WSSUS Pulse Optimization, Simplified
step ¶ ”The TF localization problem”

in general, ”maximize the following term”

E|,|2 =
∑
µ∈Z2

N

Cµ|〈g , πµγ〉|2

TF localization operators3 LC ,γ =
∑
µ∈Z2

N
Cµ〈πµγ, ·〉πµγ

without further structure: alternating optimization

lower bound from convexity (used for initialization)

problem:

max
g,γ

E|,|2 = 〈|Agγ |2,C〉

= max
γ
λmax(LC ,γ) = max

γ
‖A(Πγ)‖ = max

X≥0,tr X=1
‖A(X )‖

Some special cases and bounds. . .

3Daubechies, “Time-Frequency Localization Operators: A Geometric Phase Space Approach”, 1988
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without further structure: alternating optimization

lower bound from convexity (used for initialization)

problem:

max
g,γ

E|,|2 = 〈|Agγ |2,C〉

= max
γ
λmax(LC ,γ) = max

γ
‖A(Πγ)‖ = max

X≥0,tr X=1
‖A(X )‖

Some special cases and bounds. . .

3Daubechies, “Time-Frequency Localization Operators: A Geometric Phase Space Approach”, 1988
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WSSUS Pulse Optimization
step ¶ “Weighted norms of Wigner and Ambiguity Functions”

Some special cases and bounds are known in the continuous setting4

Let Agγ(µ) = 〈g , πµγ〉 ,‖g‖2 = ‖γ‖2 = 1 and p, r ∈ R. Furthermore let C ∈ Lq(R2) with
q = p

p−1
. Then for each p ≥ max{1, 2

r
} it holds:

‖|Agγ |rC‖1 ≤
(

2

rp

) 1
p

‖C‖ p
p−1

equality only possible for Gaussians (g , γ,C), for C(µ) = αe−απ|µ|
2

with α ≥ 2−r
2

max
g,γ
‖|Agγ |rC‖1 =

2α

2α + r

U ⊂ R2, 0 < |U| <∞ and C = χU/|U|. With r∗ = max{r , 2}:

‖|Agγ |rC‖1 <

e−
r|U|

2e |U| ≤ 2e/r∗(
2

r∗|U|

)r/r∗
else

4 PJ, “Weighted Norms of Cross Ambiguity Functions and Wigner Distributions”, 2006
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WSSUS Pulse Optimization, Simplified

Recap. . .

SINR(g , γ, Λ) ≥ E|,|2

σ2
z + Bγ − E|,|2

with Bessel constant Bγ of {γλ}λ∈Λ.

Simplified Strategy. . .

¶ Maximize E|,|2 over (g , γ) for given C (TF localization step).

· Minimize Bγ over (Λ, γ) for fixed Λ, i.e, for |Λ| ≤ 1:

h = (|Λ| · S)−
1
2 γ where S =

∑
m

〈γm, ·〉γm ⇒ Bh = |Λ|−1

and for |Λ| ≥ 1 proceed with Λ◦ (adjoint lattice) and use “Ron Shen”-duality5

¸ Update g

5 Ron&Shen Z, “Weyl–Heisenberg frames and Riesz bases in L2(Rd )”, Duke Math. J. 1997;89(2)
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WSSUS Pulse Optimization
”Balian–Low Theorem” 6

Offset-QAM modulation (OQAM)7 and Wilson bases89

1 h real&symmetric,

2 Λ diag., |Λ|−1 = 2 and

1 {hλ}λ∈Λ tight frame h = (det(Λ) · S)−
1
2 γ

2 Re〈inhn, i
mhm〉 ∼ δmn

IOTA/OQAM and FBMC

6Balian, “Un principe d incertitude fort en theorie du signal ou en mecanique quantique”, 1981
7Chang, “Synthesis of Band-Limited Orthogonal signals for Multicarrier Data Transmission”. 1966, Bell. Syst. Tech. J.
8Wilson, “Generalized Wannier functions”. 1987
9Daubechies, Jaffard, Journe, “A simple Wilson orthonormal basis with exponential decay”. SIAM J. Math. Anal. 1991
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WSSUS Pulse Optimization, 2-Step Strategy
“without Balian-Low. . . ”

Let F = σ2
z + |Λ|−1. For the optimal signaling we would get then:

Upper bound holds for any shape of U

Lower bound is for U = � and ignoring the Balian-Low Theorem

Peter Jung, HIM16, finite WH workshop 14/1



Numerical Experiments

alternating max. SINR(g , γ, Λ) = E|,|2/E|/|2, initialized by lower bound

alternating max. E|,|2 without min. Bγ , initialized by lower bound

alternating max. E|,|2 and min. Bγ , initialized by lower bound

matched Gaussians

matched tight frame from Gaussians (IOTA)

Peter Jung, HIM16, finite WH workshop 15/1



Numerical Experiments, Example
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Numerical Experiments

design on L = 512 sample values at bandwidth W

delay spread τ := τd ·W 0 1 5 9 29 49 149
Doppler B := BD/W · L 74 37 12 7 2 1 0

(τ + 1)(2B + 1) = 150 (|U| ≈ 0.29) fixed and R = τ+1
2B+1 as in the table

OQAM modulation at |Λ| = 1/2.

Peter Jung, HIM16, finite WH workshop 17/1



Summary and Conclusions
summary:

waveform optimization is again a hot topic for 5G

bounds to characterize TF localization

open problems:

Using group structure& majorization arguments&symmetry of C to charactize:∑
µ∈Z2

N

Cµ|〈g , πµγ〉|2 ≥ |〈g ,
∑
µ∈Z2

N

Cµπµγ〉|2

using finite-dim. equivalents of Gaussians

Finite and quantitative versions of the Balian-Low theorem

How to solve numerically efficient:

max
tr (X )=1,X≥0

‖A(X )D(X )−1‖ = max
g,γ

E|,|2

E|/|2

Include the lattice Λ

max
g,γ,Λ

1

|Λ| log(1 +
E|,|2

E|/|2 )
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Thank You




