Some Aspects of Weyl-Heisenberg Signal Design in Wireless Communication

Peter Jung

peter.jung@tu-berlin.de

Electrical Engineering and Computer Science, TU-Berlin Communications and Information Theory Chair TU Berlin, Einsteinufer 25 10587 Berlin, Germany

evolution of cellular mobile standards

- 3G (UMTS)
- WiMAX in 2005 (OFDM = some TF signaling)
- 3G HSDPA+ in 2009 ©
- 4G LTE in 2010 (OFDM) ©
- 4.5G LTE Advanced in 2016 (OFDM) ©
- 5G in 2020 ☺/☺ ?

new term: waveforms

- several EU projects (Phydyas, METIS, 5GNow, 5G-Fantastic...)
- waveform challenges in 5G
 - support robust sporadic communication and asynchronous massive connectivity
 - robust against: time&frequency dispersions, asynchronous access, low-cost hardware
 - \Rightarrow Using Weyl–Heisenberg structures for waveform design

evolution of cellular mobile standards

- 3G (UMTS)
- WiMAX in 2005 (OFDM = some TF signaling)
- 3G HSDPA+ in 2009 🙁
- 4G LTE in 2010 (OFDM) @
- 4.5G LTE Advanced in 2016 (OFDM) ©
- 5G in 2020 ☺/☺ ?

new term: waveforms

- several EU projects (Phydyas, METIS, 5GNow, 5G-Fantastic...)
- waveform challenges in 5G
 - support robust sporadic communication and asynchronous massive connectivity
 - robust against: time&frequency dispersions, asynchronous access, low-cost hardware
 - \Rightarrow Using Weyl–Heisenberg structures for waveform design

evolution of cellular mobile standards

- 3G (UMTS)
- WiMAX in 2005 (OFDM = some TF signaling)
- 3G HSDPA+ in 2009 🙁
- 4G LTE in 2010 (OFDM) 😳
- 4.5G LTE Advanced in 2016 (OFDM) ③
- 5G in 2020 ☺/☺ ?

new term: waveforms

• several EU projects (Phydyas, METIS, 5GNow, 5G-Fantastic...)

- support robust sporadic communication and asynchronous massive connectivity
- robust against: time&frequency dispersions, asynchronous access, low-cost hardware
- \Rightarrow Using Weyl–Heisenberg structures for waveform design

evolution of cellular mobile standards

- 3G (UMTS)
- WiMAX in 2005 (OFDM = some TF signaling)
- 3G HSDPA+ in 2009 🙁
- 4G LTE in 2010 (OFDM) 😳
- 4.5G LTE Advanced in 2016 (OFDM) ③
- 5G in 2020 ☺/☺ ?

new term: waveforms

• several EU projects (Phydyas, METIS, 5GNow, 5G-Fantastic...)

- support robust sporadic communication and asynchronous massive connectivity
- robust against: time&frequency dispersions, asynchronous access, low-cost hardware
- \Rightarrow Using Weyl–Heisenberg structures for waveform design

evolution of cellular mobile standards

- 3G (UMTS)
- WiMAX in 2005 (OFDM = some TF signaling)
- 3G HSDPA+ in 2009 (2)
- 4G LTE in 2010 (OFDM) 😳
- 4.5G LTE Advanced in 2016 (OFDM) ©
- 5G in 2020 ☺/☺ ?

new term: waveforms

• several EU projects (Phydyas, METIS, 5GNow, 5G-Fantastic...)

- support robust sporadic communication and asynchronous massive connectivity
- robust against: time&frequency dispersions, asynchronous access, low-cost hardware
- ⇒ Using Weyl–Heisenberg structures for waveform design

evolution of cellular mobile standards

- 3G (UMTS)
- WiMAX in 2005 (OFDM = some TF signaling)
- 3G HSDPA+ in 2009 (2)
- 4G LTE in 2010 (OFDM) 😳
- 4.5G LTE Advanced in 2016 (OFDM) ©
- 5G in 2020 ⁽²⁾/⁽²⁾?

new term: waveforms

• several EU projects (Phydyas, METIS, 5GNow, 5G-Fantastic...)

- support robust sporadic communication and asynchronous massive connectivity
- robust against: time&frequency dispersions, asynchronous access, low-cost hardware
- \Rightarrow Using Weyl–Heisenberg structures for waveform design

Outline

Time-frequency shifts and Spreading representation

• time-frequency shifts $\pi_{\mu} \in \mathbb{C}^{N \times N}$ for $\mu \in \mathbb{P}_N := \mathbb{Z}_N \times \mathbb{Z}_N$ acts on ONB $\{e_n\}_{n=0}^{N-1}$

$$\pi_{\mu}e_m := \exp(i2\pi\mu_1 m/N)e_{m\ominus\mu_2}$$

• Weyl commutation rule $\pi_{\mu}\pi_{\nu} = \exp(i2\pi[\mu,\nu])\cdot\pi_{\nu}\pi_{\mu}$

- $\{\pi_{\mu}\}_{\mu\in\mathbb{P}_{N}}$ is ONB for $\mathbb{C}^{N\times N}$ wrt $\langle A,B\rangle = \operatorname{tr}(A^{*}B)/N$.
- spreading representation $\hat{\sigma} = \{\hat{\sigma}_{\mu}\}_{\mu \in \mathbb{P}_N} \in \mathbb{C}^{N \times N}$ of matrix $H \in \mathbb{C}^{N \times N}$

$$H = \sum_{\mu \in \mathbb{P}_N} \langle \pi_\mu, H \rangle \pi_\mu = \sum_{\mu \in \mathbb{P}_N} \hat{\sigma}_\mu \pi_\mu$$

• symbol $\sigma = {\sigma_{\mu}}_{\mu \in \mathbb{P}_{N}} \in \mathbb{C}^{N \times N}$ is sympl. Fourier trafe $\sigma = \mathcal{F}_{s} \hat{\sigma}$ of $\hat{\sigma}$.

• A considerable simplified discrete description is:

r = Hs + z

where $s,r,z\in\mathbb{C}^{N}$ and channel matrix $H\in\mathbb{C}^{N imes N}$

Time-frequency shifts and Spreading representation

• time-frequency shifts $\pi_{\mu} \in \mathbb{C}^{N \times N}$ for $\mu \in \mathbb{P}_N := \mathbb{Z}_N \times \mathbb{Z}_N$ acts on ONB $\{e_n\}_{n=0}^{N-1}$

 $\pi_{\mu}e_m := \exp(i2\pi\mu_1 m/N)e_{m\ominus\mu_2}$

- Weyl commutation rule π_μπ_ν = exp(i2π[μ, ν]) · π_νπ_μ
- $\{\pi_{\mu}\}_{\mu\in\mathbb{P}_{N}}$ is ONB for $\mathbb{C}^{N\times N}$ wrt $\langle A,B\rangle = \operatorname{tr}(A^{*}B)/N$.
- spreading representation $\hat{\sigma} = \{\hat{\sigma}_{\mu}\}_{\mu \in \mathbb{P}_N} \in \mathbb{C}^{N \times N}$ of matrix $H \in \mathbb{C}^{N \times N}$

$$H = \sum_{\mu \in \mathbb{P}_N} \langle \pi_\mu, H \rangle \pi_\mu = \sum_{\mu \in \mathbb{P}_N} \hat{\sigma}_\mu \pi_\mu$$

• symbol $\sigma = {\sigma_{\mu}}_{\mu \in \mathbb{P}_{N}} \in \mathbb{C}^{N \times N}$ is sympl. Fourier trafe $\sigma = \mathcal{F}_{s} \hat{\sigma}$ of $\hat{\sigma}$.

• A considerable simplified discrete description is:

r = Hs + z

where $s, r, z \in \mathbb{C}^N$ and channel matrix $H \in \mathbb{C}^{N imes N}$

Time-frequency shifts and Spreading representation

• time-frequency shifts $\pi_{\mu} \in \mathbb{C}^{N \times N}$ for $\mu \in \mathbb{P}_N := \mathbb{Z}_N \times \mathbb{Z}_N$ acts on ONB $\{e_n\}_{n=0}^{N-1}$

 $\pi_{\mu}e_m := \exp(i2\pi\mu_1 m/N)e_{m\ominus\mu_2}$

- Weyl commutation rule π_μπ_ν = exp(i2π[μ, ν]) · π_νπ_μ
- $\{\pi_{\mu}\}_{\mu\in\mathbb{P}_{N}}$ is ONB for $\mathbb{C}^{N\times N}$ wrt $\langle A, B \rangle = \operatorname{tr}(A^{*}B)/N$.
- spreading representation $\hat{\sigma} = \{\hat{\sigma}_{\mu}\}_{\mu \in \mathbb{P}_N} \in \mathbb{C}^{N \times N}$ of matrix $H \in \mathbb{C}^{N \times N}$

$$H = \sum_{\mu \in \mathbb{P}_N} \langle \pi_\mu, H
angle \pi_\mu = \sum_{\mu \in \mathbb{P}_N} \hat{\sigma}_\mu \pi_\mu$$

• symbol $\sigma = \{\sigma_{\mu}\}_{\mu \in \mathbb{P}_{N}} \in \mathbb{C}^{N \times N}$ is sympl. Fourier trafe $\sigma = \mathcal{F}_{s}\hat{\sigma}$ of $\hat{\sigma}$.

• A considerable simplified discrete description is:

r = Hs + z

where $s,r,z\in\mathbb{C}^{N}$ and channel matrix $H\in\mathbb{C}^{N imes N}$

Time-frequency shifts and Spreading representation

• time-frequency shifts $\pi_{\mu} \in \mathbb{C}^{N \times N}$ for $\mu \in \mathbb{P}_N := \mathbb{Z}_N \times \mathbb{Z}_N$ acts on ONB $\{e_n\}_{n=0}^{N-1}$

$$\pi_{\mu}e_m := \exp(i2\pi\mu_1 m/N)e_{m\ominus\mu_2}$$

• Weyl commutation rule $\pi_{\mu}\pi_{\nu} = \exp(i2\pi[\mu,\nu])\cdot\pi_{\nu}\pi_{\mu}$

- $\{\pi_{\mu}\}_{\mu\in\mathbb{P}_{N}}$ is ONB for $\mathbb{C}^{N\times N}$ wrt $\langle A,B\rangle = \operatorname{tr}(A^{*}B)/N$.
- spreading representation $\hat{\sigma} = \{\hat{\sigma}_{\mu}\}_{\mu \in \mathbb{P}_N} \in \mathbb{C}^{N \times N}$ of matrix $H \in \mathbb{C}^{N \times N}$

$$H = \sum_{\mu \in \mathbb{P}_N} \langle \pi_\mu, H \rangle \pi_\mu = \sum_{\mu \in \mathbb{P}_N} \hat{\sigma}_\mu \pi_\mu$$

• symbol $\sigma = {\sigma_{\mu}}_{\mu \in \mathbb{P}_{N}} \in \mathbb{C}^{N \times N}$ is sympl. Fourier trafo $\sigma = \mathcal{F}_{s} \hat{\sigma}$ of $\hat{\sigma}$.

• A considerable simplified discrete description is:

r = Hs + z

where $s,r,z\in\mathbb{C}^{N}$ and channel matrix $H\in\mathbb{C}^{N imes N}$

Time-frequency shifts and Spreading representation

• time-frequency shifts $\pi_{\mu} \in \mathbb{C}^{N \times N}$ for $\mu \in \mathbb{P}_N := \mathbb{Z}_N \times \mathbb{Z}_N$ acts on ONB $\{e_n\}_{n=0}^{N-1}$

$$\pi_{\mu}e_m := \exp(i2\pi\mu_1 m/N)e_{m\ominus\mu_2}$$

• Weyl commutation rule $\pi_{\mu}\pi_{\nu} = \exp(i2\pi[\mu,\nu])\cdot\pi_{\nu}\pi_{\mu}$

- $\{\pi_{\mu}\}_{\mu\in\mathbb{P}_{N}}$ is ONB for $\mathbb{C}^{N\times N}$ wrt $\langle A,B\rangle = \operatorname{tr}(A^{*}B)/N$.
- spreading representation $\hat{\sigma} = {\{\hat{\sigma}_{\mu}\}}_{\mu \in \mathbb{P}_{N}} \in \mathbb{C}^{N \times N}$ of matrix $H \in \mathbb{C}^{N \times N}$

$$\mathcal{H} = \sum_{\mu \in \mathbb{P}_{N}} \langle \pi_{\mu}, \mathcal{H}
angle \pi_{\mu} = \sum_{\mu \in \mathbb{P}_{N}} \hat{\sigma}_{\mu} \pi_{\mu}$$

• symbol $\sigma = \{\sigma_{\mu}\}_{\mu \in \mathbb{P}_{N}} \in \mathbb{C}^{N \times N}$ is sympl. Fourier trafe $\sigma = \mathcal{F}_{s}\hat{\sigma}$ of $\hat{\sigma}$.

A considerable simplified discrete description is:

r = Hs + z

where $s,r,z\in\mathbb{C}^{N}$ and channel matrix $\pmb{H}\in\mathbb{C}^{N imes N}$

Time-frequency shifts and Spreading representation

• time-frequency shifts $\pi_{\mu} \in \mathbb{C}^{N \times N}$ for $\mu \in \mathbb{P}_N := \mathbb{Z}_N \times \mathbb{Z}_N$ acts on ONB $\{e_n\}_{n=0}^{N-1}$

$$\pi_{\mu}e_m := \exp(i2\pi\mu_1 m/N)e_{m\ominus\mu_2}$$

• Weyl commutation rule $\pi_{\mu}\pi_{\nu} = \exp(i2\pi[\mu,\nu])\cdot\pi_{\nu}\pi_{\mu}$

- $\{\pi_{\mu}\}_{\mu\in\mathbb{P}_{N}}$ is ONB for $\mathbb{C}^{N\times N}$ wrt $\langle A,B\rangle = \operatorname{tr}(A^{*}B)/N$.
- spreading representation $\hat{\sigma} = \{\hat{\sigma}_{\mu}\}_{\mu \in \mathbb{P}_{N}} \in \mathbb{C}^{N \times N}$ of matrix $H \in \mathbb{C}^{N \times N}$

$$\mathcal{H} = \sum_{\mu \in \mathbb{P}_{N}} \langle \pi_{\mu}, \mathcal{H}
angle \pi_{\mu} = \sum_{\mu \in \mathbb{P}_{N}} \hat{\sigma}_{\mu} \pi_{\mu}$$

- symbol $\sigma = \{\sigma_{\mu}\}_{\mu \in \mathbb{P}_{N}} \in \mathbb{C}^{N \times N}$ is sympl. Fourier trafe $\sigma = \mathcal{F}_{s}\hat{\sigma}$ of $\hat{\sigma}$.
- A considerable simplified discrete description is:

$$r = Hs + z$$

where $s, r, z \in \mathbb{C}^N$ and channel matrix $H \in \mathbb{C}^{N \times N}$

Typical wireless channels

• impulse response $h = F^{-1}\hat{\sigma} \in \mathbb{C}^{N \times N}$ is $h_{t,\tau} = \sum_{\mu_1=0}^{N-1} e^{i2\pi\mu_1 t/N} \hat{\sigma}_{(\mu_1,\tau)}$

ullet mobile channels are *underspread*: $ext{supp}(\hat{\sigma}) \subset U$ with $|U| pprox 0.01 imes N^2$, and *sparse*

 but, poor timing synchronization, oscillator mismatch and phasenoise ("dirty RF") in multiuser scenarios effectively increase |U|.

Typical wireless channels

• impulse response $h = F^{-1}\hat{\sigma} \in \mathbb{C}^{N \times N}$ is $h_{t,\tau} = \sum_{\mu_1=0}^{N-1} e^{i2\pi\mu_1 t/N} \hat{\sigma}_{(\mu_1,\tau)}$

• mobile channels are underspread: supp $(\hat{\sigma}) \subset U$ with $|U| \approx 0.01 \times N^2$, and sparse

 but, poor timing synchronization, oscillator mismatch and phasenoise ("dirty RF") in multiuser scenarios effectively increase |U|.

Typical wireless channels

• impulse response $h = F^{-1}\hat{\sigma} \in \mathbb{C}^{N \times N}$ is $h_{t,\tau} = \sum_{\mu_{\tau}=0}^{N-1} e^{i2\pi\mu_{1}t/N}\hat{\sigma}_{(\mu_{1},\tau)}$

• mobile channels are underspread: supp $(\hat{\sigma}) \subset U$ with $|U| \approx 0.01 \times N^2$, and sparse

 but, poor timing synchronization, oscillator mismatch and phasenoise ("dirty RF") in multiuser scenarios effectively increase |U|.

Time-Frequency Signaling

- Λ ⊂ ℙ subgroup (lattice) generated by Λ = Z^{2×2}. Define |Λ| = N/card(Λ)
- For fixed $g, \gamma \in \mathbb{C}^N$ define Gabor sets $\{\gamma_n = \pi_{\Lambda n} \gamma\}$ and $\{g_n = \pi_{\Lambda n} g\}$,

• Transmission of data symbols $\{x_n\} \subset \mathbb{C}$ using N samples $\{y_m\}$ through a channel $\mathcal{H} \in \mathbb{C}^{N \times N}$ with additive noise z:

$$y_m = \langle g_m, \mathcal{H}\gamma_m
angle \mathsf{x}_m + \sum_{n-m \notin \mathsf{SIC}} \langle g_m, \mathcal{H}\gamma_n
angle \mathsf{x}_n + \langle g_m, z
angle = \odot + \odot$$

- TF-density/spectral efficiency is $1/|\Lambda|$.
- OFDM & BFDM: A = diag(T, F) & (bi-)orthogonality

Time-Frequency Signaling

- Λ ⊂ P subgroup (lattice) generated by Λ = Z^{2×2}. Define |Λ| = N/card(Λ)
- For fixed $g, \gamma \in \mathbb{C}^N$ define Gabor sets $\{\gamma_n = \pi_{An}\gamma\}$ and $\{g_n = \pi_{An}g\}$,

• Transmission of data symbols $\{x_n\} \subset \mathbb{C}$ using N samples $\{y_m\}$ through a channel $\mathcal{H} \in \mathbb{C}^{N \times N}$ with additive noise z:

$$y_m = \langle g_m, \mathcal{H}\gamma_m \rangle x_m + \sum_{n-m \notin \mathsf{SIC}} \langle g_m, \mathcal{H}\gamma_n \rangle x_n + \langle g_m, z \rangle = \odot + \odot$$

- TF-density/spectral efficiency is 1/|A|.
- OFDM & BFDM: $\Lambda = diag(T, F)$ & (bi–)orthogonality

Time-Frequency Signaling

- Λ ⊂ P subgroup (lattice) generated by Λ = Z^{2×2}. Define |Λ| = N/card(Λ)
- For fixed $g, \gamma \in \mathbb{C}^N$ define Gabor sets $\{\gamma_n = \pi_{\Lambda n} \gamma\}$ and $\{g_n = \pi_{\Lambda n} g\}$,

• Transmission of data symbols $\{x_n\} \subset \mathbb{C}$ using N samples $\{y_m\}$ through a channel $\mathcal{H} \in \mathbb{C}^{N \times N}$ with additive noise z:

$$y_m = \langle g_m, \mathcal{H}\gamma_m \rangle x_m + \sum_{n-m \notin \mathsf{SIC}} \langle g_m, \mathcal{H}\gamma_n \rangle x_n + \langle g_m, z \rangle = \textcircled{0} + \textcircled{0}$$

- TF-density/spectral efficiency is $1/|\Lambda|$.
- OFDM & BFDM: $\Lambda = diag(T, F)$ & (bi–)orthogonality

Time-Frequency Signaling

- Λ ⊂ P subgroup (lattice) generated by Λ = Z^{2×2}. Define |Λ| = N/card(Λ)
- For fixed $g, \gamma \in \mathbb{C}^N$ define Gabor sets $\{\gamma_n = \pi_{An}\gamma\}$ and $\{g_n = \pi_{An}g\}$,

• Transmission of data symbols $\{x_n\} \subset \mathbb{C}$ using N samples $\{y_m\}$ through a channel $\mathcal{H} \in \mathbb{C}^{N \times N}$ with additive noise z:

$$y_m = \langle g_m, \mathcal{H}\gamma_m \rangle x_m + \sum_{n-m \notin \mathsf{SIC}} \langle g_m, \mathcal{H}\gamma_n \rangle x_n + \langle g_m, z \rangle = \textcircled{0} + \textcircled{0}$$

- TF-density/spectral efficiency is $1/|\Lambda|$.
- OFDM & BFDM: A = diag(T, F) & (bi–)orthogonality

"signal-to-noise-and-interference ratio"

 $\mathsf{SINR}(g,\gamma,\Lambda) = \mathbb{E}|\odot|^2/\mathbb{E}|\odot|^2$ relation to (g,γ,Λ) ?

Can we find simple estimates for given scattering scenarios?

- $\bullet\,$ inst. SINR not practicable but second order changes slowly $\rightarrow\,$ WSSUS
- $\mathbb{E}(\hat{\sigma}) = 0$ and $\mathbb{E}(\hat{\sigma}_{\mu}\hat{\sigma}_{\nu}^{*}) = C_{\mu}\delta_{\mu,\nu}$ with scattering prob. $C \in \mathbb{R}^{N \times I}_{+}$
- $A(X):=\sum_{\mu} C_{\mu}\cdot \pi_{\mu}X\pi_{\mu}$ for $X\in\mathbb{C}^{N imes I}$
- Weyl-covariant, trace&pos-preserving, A(Id) = Id, $A(X^*) = A(X)^*$, $A_C \circ A_D = A_D \circ A_C = A_{C*D}...$
- $B(X) := \sum_{\lambda \in \Lambda} \pi_{\lambda} X \pi_{\lambda}$ and $D(X) := \sigma_z^2 \mathrm{Id} + (B \circ A)(X)$. Set $\Pi_{\gamma} = \gamma \gamma^*$:

$$\operatorname{SINR}(g,\gamma,\Lambda) = \frac{\mathbb{E}|\odot|^2}{\mathbb{E}|\odot|^2} = \frac{\langle \Pi_g, A(\Pi_\gamma) \rangle}{\langle \Pi_g, D(\Pi_\gamma) \rangle}$$

• optimize with respect (g, γ) for fixed Λ :

$$\max_{g,\gamma} \mathrm{SINR}(g,\gamma,\Lambda) = \max_{\gamma} \lambda_{\max}(A(\Pi_{\gamma})D(\Pi_{\gamma})^{-1})$$

is possible, at least locally, by alternating maximization (initialization, later...)

- $\bullet\,$ inst. SINR not practicable but second order changes slowly $\rightarrow\,$ WSSUS
- $\mathbb{E}(\hat{\sigma}) = 0$ and $\mathbb{E}(\hat{\sigma}_{\mu}\hat{\sigma}_{\nu}^{*}) = C_{\mu}\delta_{\mu,\nu}$ with scattering prob. $C \in \mathbb{R}^{N \times N}_{+}$
- $A(X) := \sum_{\mu} C_{\mu} \cdot \pi_{\mu} X \pi_{\mu}$ for $X \in \mathbb{C}^{N \times I}$
- Weyl-covariant, trace&pos-preserving, A(Id) = Id, $A(X^*) = A(X)^*$, $A_C \circ A_D = A_D \circ A_C = A_{C*D}...$
- $B(X) := \sum_{\lambda \in A} \pi_{\lambda} X \pi_{\lambda}$ and $D(X) := \sigma_z^2 \mathrm{Id} + (B \circ A)(X)$. Set $\Pi_{\gamma} = \gamma \gamma^*$:

$$\mathsf{SINR}(g,\gamma,\Lambda) = \frac{\mathbb{E}|\odot|^2}{\mathbb{E}|\odot|^2} = \frac{\langle \Pi_g, \mathcal{A}(\Pi_\gamma) \rangle}{\langle \Pi_g, \mathcal{D}(\Pi_\gamma) \rangle}$$

• optimize with respect (g, γ) for fixed A:

$$\max_{g,\gamma} SINR(g,\gamma,\Lambda) = \max_{\gamma} \lambda_{\max}(A(\Pi_{\gamma})D(\Pi_{\gamma})^{-1})$$

is possible, at least locally, by alternating maximization (initialization, later. . .)

- $\bullet\,$ inst. SINR not practicable but second order changes slowly $\rightarrow\,WSSUS$
- $\mathbb{E}(\hat{\sigma}) = 0$ and $\mathbb{E}(\hat{\sigma}_{\mu}\hat{\sigma}_{\nu}^{*}) = C_{\mu}\delta_{\mu,\nu}$ with scattering prob. $C \in \mathbb{R}^{N \times N}_{+}$

•
$$A(X) := \sum_{\mu} C_{\mu} \cdot \pi_{\mu} X \pi_{\mu}$$
 for $X \in \mathbb{C}^{N \times I}$

- Weyl-covariant, trace&pos-preserving, A(Id) = Id, $A(X^*) = A(X)^*$, $A_C \circ A_D = A_D \circ A_C = A_{C*D}...$
- $B(X) := \sum_{\lambda \in A} \pi_{\lambda} X \pi_{\lambda}$ and $D(X) := \sigma_z^2 \operatorname{Id} + (B \circ A)(X)$. Set $\Pi_{\gamma} = \gamma \gamma^*$:

$$\mathsf{SINR}(g,\gamma,\Lambda) = \frac{\mathbb{E}|\odot|^2}{\mathbb{E}|\odot|^2} = \frac{\langle \Pi_g, \mathcal{A}(\Pi_\gamma) \rangle}{\langle \Pi_g, \mathcal{D}(\Pi_\gamma) \rangle}$$

• optimize with respect (g, γ) for fixed Λ :

$$\max_{g,\gamma} SINR(g,\gamma,\Lambda) = \max_{\gamma} \lambda_{\max}(A(\Pi_{\gamma})D(\Pi_{\gamma})^{-1})$$

is possible, at least locally, by alternating maximization (initialization, later...)

- $\bullet\,$ inst. SINR not practicable but second order changes slowly $\rightarrow\,$ WSSUS
- $\mathbb{E}(\hat{\sigma}) = 0$ and $\mathbb{E}(\hat{\sigma}_{\mu}\hat{\sigma}_{\nu}^{*}) = C_{\mu}\delta_{\mu,\nu}$ with scattering prob. $C \in \mathbb{R}^{N \times N}_{+}$

•
$$A(X) := \sum_{\mu} C_{\mu} \cdot \pi_{\mu} X \pi_{\mu}$$
 for $X \in \mathbb{C}^{N imes I}$

• Weyl-covariant, trace&pos-preserving, A(Id) = Id, $A(X^*) = A(X)^*$, $A_C \circ A_D = A_D \circ A_C = A_{C*D}...$

•
$$B(X) := \sum_{\lambda \in \Lambda} \pi_{\lambda} X \pi_{\lambda}$$
 and $D(X) := \sigma_z^2 \mathsf{Id} + (B \circ A)(X)$. Set $\Pi_{\gamma} = \gamma \gamma^*$:

$$\mathsf{SINR}(g,\gamma,\Lambda) = \frac{\mathbb{E}|\mathfrak{S}|^2}{\mathbb{E}|\mathfrak{S}|^2} = \frac{\langle \Pi_g, \mathcal{A}(\Pi_\gamma) \rangle}{\langle \Pi_g, \mathcal{D}(\Pi_\gamma) \rangle}$$

• optimize with respect (g, γ) for fixed Λ :

$$\max_{g,\gamma} \mathsf{SINR}(g,\gamma,\Lambda) = \max_{\gamma} \lambda_{\max}(A(\Pi_{\gamma})D(\Pi_{\gamma})^{-1})$$

is possible, at least locally, by alternating maximization (initialization, later. . .)

- $\bullet\,$ inst. SINR not practicable but second order changes slowly $\rightarrow\,$ WSSUS
- $\mathbb{E}(\hat{\sigma}) = 0$ and $\mathbb{E}(\hat{\sigma}_{\mu}\hat{\sigma}_{\nu}^{*}) = C_{\mu}\delta_{\mu,\nu}$ with scattering prob. $C \in \mathbb{R}^{N \times N}_{+}$

•
$$A(X) := \sum_{\mu} C_{\mu} \cdot \pi_{\mu} X \pi_{\mu}$$
 for $X \in \mathbb{C}^{N \times N}$

• Weyl-covariant, trace&pos-preserving, A(Id) = Id, $A(X^*) = A(X)^*$, $A_C \circ A_D = A_D \circ A_C = A_{C*D}...$

•
$$B(X) := \sum_{\lambda \in \Lambda} \pi_{\lambda} X \pi_{\lambda}$$
 and $D(X) := \sigma_z^2 \mathsf{Id} + (B \circ A)(X)$. Set $\Pi_{\gamma} = \gamma \gamma^*$:

$$\mathsf{SINR}(g,\gamma,\Lambda) = \frac{\mathbb{E}|\odot|^2}{\mathbb{E}|\odot|^2} = \frac{\langle \Pi_g, \mathcal{A}(\Pi_\gamma) \rangle}{\langle \Pi_g, \mathcal{D}(\Pi_\gamma) \rangle}$$

• optimize with respect (g, γ) for fixed Λ :

$$\max_{g,\gamma} \mathsf{SINR}(g,\gamma,\Lambda) = \max_{\gamma} \lambda_{\max}(A(\Pi_{\gamma})D(\Pi_{\gamma})^{-1})$$

is possible, at least locally, by alternating maximization (initialization, later...)

• Consider the lower bound:

$$\mathsf{SINR}(g,\gamma,\Lambda) \geq \frac{\mathbb{E}|\textcircled{s}|^2}{\sigma_z^2 + \frac{B_\gamma}{\sigma_z} - \mathbb{E}|\textcircled{s}|^2}$$

with Bessel constant B_{γ} of $\{\gamma_{\lambda}\}_{\lambda \in \Lambda}$, i.e., $\|\{\langle \gamma_{\lambda}, x \rangle_{\lambda \in \Lambda}\}\|_{2}^{2} \leq B_{\gamma}\|x\|_{2}^{2}$

• Simplified Strategy...¹²

• Maximize $\mathbb{E}|\odot|^2$ over (g,γ) for given C (TF localization step).

 $lacksymbol{0}$ Minimize B_γ over (A,γ) for fixed A

🛛 Update g

Kozek& Molisch, "Nonorthogonals pulseshapes for multicarrier communications in doubly dispersive channels", 1998
 Jung& Wunder, "Iterative Pulse Shaping for Gabor Signaling in WSSUS channels", 2004

• Consider the lower bound:

$$\mathsf{SINR}(g,\gamma,\Lambda) \geq rac{\mathbb{E}|\textcircled{o}|^2}{\sigma_z^2 + B_\gamma - \mathbb{E}|\textcircled{o}|^2}$$

with Bessel constant B_{γ} of $\{\gamma_{\lambda}\}_{\lambda \in \Lambda}$, i.e., $\|\{\langle \gamma_{\lambda}, x \rangle_{\lambda \in \Lambda}\}\|_{2}^{2} \leq B_{\gamma}\|x\|_{2}^{2}$

• Simplified Strategy... ¹ ²

1 Maximize $\mathbb{E}|\mathfrak{S}|^2$ over (g, γ) for given C (TF localization step).

2 Minimize B_γ over (A,γ) for fixed A

Opdate g

¹ Kozek& Molisch, "Nonorthogonals pulseshapes for multicarrier communications in doubly dispersive channels", 1998

² Jung& Wunder, "Iterative Pulse Shaping for Gabor Signaling in WSSUS channels", 2004 Peter Jung, HIM16, finite WH workshop

• Consider the lower bound:

$$\mathsf{SINR}(g,\gamma,\Lambda) \geq rac{\mathbb{E}|\textcircled{o}|^2}{\sigma_z^2 + B_\gamma - \mathbb{E}|\textcircled{o}|^2}$$

with Bessel constant B_{γ} of $\{\gamma_{\lambda}\}_{\lambda \in \Lambda}$, i.e., $\|\{\langle \gamma_{\lambda}, x \rangle_{\lambda \in \Lambda}\}\|_{2}^{2} \leq B_{\gamma}\|x\|_{2}^{2}$

• Simplified Strategy... ^{1 2}

1 Maximize $\mathbb{E}|\mathfrak{S}|^2$ over (g, γ) for given C (TF localization step).

2 Minimize B_{γ} over (Λ, γ) for fixed Λ

Opdate g

 $^{^1}$ Kozek & Molisch, "Nonorthogonals pulseshapes for multicarrier communications in doubly dispersive channels", 1998

² Jung& Wunder, "Iterative Pulse Shaping for Gabor Signaling in WSSUS channels", 2004 Peter Jung, HIM16, finite WH workshop

step **1** "The TF localization problem"

in general, "maximize the following term"

$$\mathbb{E}|\odot|^2 = \sum_{\mu \in \mathbb{Z}^2_N} C_{\mu} |\langle g, \pi_{\mu} \gamma
angle|^2$$

- TF localization operators $L_{C,\gamma} = \sum_{\mu \in \mathbb{Z}^2_N} C_\mu \langle \pi_\mu \gamma, \cdot
 angle \pi_\mu \gamma$
- without further structure: alternating optimization
- lower bound from convexity (used for initialization)
- problem:

$$\max_{g,\gamma} \mathbb{E}|\mathfrak{S}|^{2} = \langle |A_{g\gamma}|^{2}, C \rangle$$
$$= \max_{\gamma} \lambda_{\max}(L_{C,\gamma}) = \max_{\gamma} ||A(\Pi_{\gamma})|| = \max_{X \ge 0, \text{tr} X = 1} ||A(X)||$$

• Some special cases and bounds...

³Daubechies, "Time-Frequency Localization Operators: A Geometric Phase Space Approach", 198

step **1** "The TF localization problem"

in general, "maximize the following term"

$$\begin{split} \mathbb{E}|\mathfrak{G}|^{2} &= \sum_{\mu \in \mathbb{Z}_{N}^{2}} C_{\mu} |\langle g, \pi_{\mu} \gamma \rangle|^{2} = \langle g, \boldsymbol{L}_{\boldsymbol{C}, \gamma} g \rangle \stackrel{\simeq}{=} \langle \gamma, \boldsymbol{L}_{\boldsymbol{\tilde{\mathcal{C}}}, g} \gamma \rangle \\ &\geq |\langle g, (\sum_{\mu \in \mathbb{Z}_{N}^{2}} C_{\mu} \pi_{\mu} \gamma) \rangle|^{2} \end{split}$$

- TF localization operators³ $L_{C,\gamma} = \sum_{\mu \in \mathbb{Z}^2_N} C_{\mu} \langle \pi_{\mu} \gamma, \cdot \rangle \pi_{\mu} \gamma$
- without further structure: alternating optimization
- lower bound from convexity (used for initialization)

• problem:

$$\begin{aligned} \max_{g,\gamma} \mathbb{E}|\mathbb{G}|^2 &= \langle |A_{g\gamma}|^2, C \rangle \\ &= \max_{\gamma} \lambda_{\max}(L_{C,\gamma}) = \max_{\gamma} ||A(\Pi_{\gamma})|| = \max_{X \ge 0, \text{tr } X = 1} ||A(X)| \end{aligned}$$

• Some special cases and bounds. .

³Daubechies, "Time-Frequency Localization Operators: A Geometric Phase Space Approach", 1988 Peter Jung, HIM16, finite WH workshop

step **1** "The TF localization problem"

in general, "maximize the following term"

$$\mathbb{E}|\textcircled{O}|^{2} = \sum_{\mu \in \mathbb{Z}_{N}^{2}} C_{\mu} |\langle g, \pi_{\mu} \gamma \rangle|^{2} = \langle g, L_{C,\gamma} g \rangle \stackrel{\leftrightarrow}{=} \langle \gamma, L_{\tilde{C},g} \gamma \rangle$$
$$\geq |\langle g, (\sum_{\mu \in \mathbb{Z}_{N}^{2}} C_{\mu} \pi_{\mu} \gamma) \rangle|^{2}$$

• TF localization operators³ $L_{C,\gamma} = \sum_{\mu \in \mathbb{Z}^2_N} C_{\mu} \langle \pi_{\mu} \gamma, \cdot \rangle \pi_{\mu} \gamma$

• without further structure: alternating optimization

lower bound from convexity (used for initialization)

• problem:

$$\max_{g,\gamma} \mathbb{E}|\mathbb{G}|^{2} = \langle |A_{g\gamma}|^{2}, C \rangle$$
$$= \max_{\gamma} \lambda_{\max}(L_{C,\gamma}) = \max_{\gamma} ||A(\Pi_{\gamma})|| = \max_{X \ge 0, \text{tr} X = 1} ||A(X)|$$

• Some special cases and bounds...

³Daubechies, "Time-Frequency Localization Operators: A Geometric Phase Space Approach", 1988 Peter Jung, HIM16, finite WH workshop

step **1** "The TF localization problem"

in general, "maximize the following term"

$$\begin{split} \mathbb{E}|\odot|^{2} &= \sum_{\mu \in \mathbb{Z}_{N}^{2}} C_{\mu} |\langle g, \pi_{\mu} \gamma \rangle|^{2} = \langle g, L_{C,\gamma} g \rangle \stackrel{\leftrightarrow}{=} \langle \gamma, L_{\tilde{C},g} \gamma \rangle \\ &\geq |\langle g, (\sum_{\mu \in \mathbb{Z}_{N}^{2}} C_{\mu} \pi_{\mu} \gamma) \rangle|^{2} \end{split}$$

- TF localization operators³ $L_{C,\gamma} = \sum_{\mu \in \mathbb{Z}^2_N} C_{\mu} \langle \pi_{\mu} \gamma, \cdot \rangle \pi_{\mu} \gamma$
- without further structure: alternating optimization
- lower bound from convexity (used for initialization)

problem:

$$\max_{g,\gamma} \mathbb{E}|\mathbb{G}|^{2} = \langle |A_{g\gamma}|^{2}, C \rangle$$
$$= \max_{\gamma} \lambda_{\max}(L_{C,\gamma}) = \max_{\gamma} ||A(\Pi_{\gamma})|| = \max_{X \ge 0, \text{tr} X = 1} ||A(X)|$$

• Some special cases and bounds...

³Daubechies, "Time-Frequency Localization Operators: A Geometric Phase Space Approach", 1988 Peter Jung, HIM16, finite WH workshop

step **1** "The TF localization problem"

in general, "maximize the following term"

$$\begin{split} \mathbb{E}|\odot|^{2} &= \sum_{\mu \in \mathbb{Z}_{N}^{2}} C_{\mu} |\langle \boldsymbol{g}, \pi_{\mu} \gamma \rangle|^{2} = \langle \boldsymbol{g}, \boldsymbol{L}_{\mathcal{C}, \gamma} \boldsymbol{g} \rangle \stackrel{\leftrightarrow}{=} \langle \gamma, \boldsymbol{L}_{\tilde{\mathcal{C}}, \boldsymbol{g}} \gamma \rangle \\ &\geq |\langle \boldsymbol{g}, (\sum_{\mu \in \mathbb{Z}_{N}^{2}} C_{\mu} \pi_{\mu} \gamma) \rangle|^{2} \end{split}$$

- TF localization operators³ $L_{C,\gamma} = \sum_{\mu \in \mathbb{Z}^2_N} C_{\mu} \langle \pi_{\mu} \gamma, \cdot \rangle \pi_{\mu} \gamma$
- without further structure: alternating optimization
- lower bound from convexity (used for initialization)
- problem:

$$\max_{\substack{g,\gamma\\ \gamma}} \mathbb{E}|\mathfrak{S}|^2 = \langle |A_{g\gamma}|^2, C \rangle$$
$$= \max_{\gamma} \lambda_{\max}(L_{C,\gamma}) = \max_{\gamma} ||A(\Pi_{\gamma})|| = \max_{X \ge 0, \text{tr} X = 1} ||A(X)|$$

• Some special cases and bounds...

³Daubechies, "Time-Frequency Localization Operators: A Geometric Phase Space Approach", 1988 Peter Jung, HIM16, finite WH workshop

step **1** "Weighted norms of Wigner and Ambiguity Functions"

Some special cases and bounds are known in the continuous setting⁴

Let $A_{g\gamma}(\mu) = \langle g, \pi_{\mu}\gamma \rangle$, $\|g\|_2 = \|\gamma\|_2 = 1$ and $p, r \in \mathbb{R}$. Furthermore let $C \in L_q(\mathbb{R}^2)$ with $q = \frac{p}{p-1}$. Then for each $p \ge \max\{1, \frac{2}{r}\}$ it holds:

$$\||A_{g\gamma}|^{r}C\|_{1} \leq \left(\frac{2}{rp}\right)^{\frac{1}{p}} \|C\|_{\frac{p}{p-1}}$$

• equality only possible for Gaussians (g, γ, C) , for $C(\mu) = \alpha e^{-\alpha \pi |\mu|^2}$ with $\alpha \ge \frac{2-r}{2}$

$$\max_{g,\gamma} \||A_{g\gamma}|^r C\|_1 = \frac{2\alpha}{2\alpha + r}$$

• $U \subset \mathbb{R}^2$, $0 < |U| < \infty$ and $C = \chi_U / |U|$. With $r^* = \max\{r, 2\}$:

$$|||A_{g\gamma}|^r C||_1 < \begin{cases} e^{-\frac{r|U|}{2e}} & |U| \le 2e/r^* \\ \left(\frac{2}{r^*|U|}\right)^{r/r^*} & \text{else} \end{cases}$$

⁴ PJ, "Weighted Norms of Cross Ambiguity Functions and Wigner Distributions", 2006 Peter Jung, HIM16, finite WH workshop

step **1** "Weighted norms of Wigner and Ambiguity Functions"

Some special cases and bounds are known in the continuous setting⁴

Let $A_{g\gamma}(\mu) = \langle g, \pi_{\mu}\gamma \rangle$, $\|g\|_2 = \|\gamma\|_2 = 1$ and $p, r \in \mathbb{R}$. Furthermore let $C \in L_q(\mathbb{R}^2)$ with $q = \frac{p}{p-1}$. Then for each $p \ge \max\{1, \frac{2}{r}\}$ it holds:

$$\||A_{g\gamma}|^{r}C\|_{1} \leq \left(\frac{2}{rp}\right)^{\frac{1}{p}} \|C\|_{\frac{p}{p-1}}$$

• equality only possible for Gaussians (g, γ, C) , for $C(\mu) = \alpha e^{-\alpha \pi |\mu|^2}$ with $\alpha \geq \frac{2-r}{2}$

$$\max_{g,\gamma} \||A_{g\gamma}|^r C\|_1 = \frac{2\alpha}{2\alpha + r}$$

• $U \subset \mathbb{R}^2$, $0 < |U| < \infty$ and $C = \chi_U / |U|$. With $r^* = \max\{r, 2\}$:

$$|||A_{g\gamma}|^r C||_1 < \begin{cases} e^{-\frac{r|U|}{2e}} & |U| \le 2e/r^* \\ \left(\frac{2}{r^*|U|}\right)^{r/r^*} & \text{else} \end{cases}$$

 $^{^4}$ PJ, "Weighted Norms of Cross Ambiguity Functions and Wigner Distributions", 2006 Peter Jung, HIM16, finite WH workshop

step **1** "Weighted norms of Wigner and Ambiguity Functions"

Some special cases and bounds are known in the continuous setting⁴

Let $A_{g\gamma}(\mu) = \langle g, \pi_{\mu}\gamma \rangle$, $\|g\|_2 = \|\gamma\|_2 = 1$ and $p, r \in \mathbb{R}$. Furthermore let $C \in L_q(\mathbb{R}^2)$ with $q = \frac{p}{p-1}$. Then for each $p \ge \max\{1, \frac{2}{r}\}$ it holds:

$$\||A_{g\gamma}|^{r}C\|_{1} \leq \left(\frac{2}{rp}\right)^{\frac{1}{p}} \|C\|_{\frac{p}{p-1}}$$

• equality only possible for Gaussians (g, γ, C) , for $C(\mu) = \alpha e^{-\alpha \pi |\mu|^2}$ with $\alpha \geq \frac{2-r}{2}$

$$\max_{g,\gamma} \||A_{g\gamma}|^r C\|_1 = \frac{2\alpha}{2\alpha + r}$$

• $U \subset \mathbb{R}^2$, $0 < |U| < \infty$ and $C = \chi_U/|U|$. With $r^* = \max\{r, 2\}$:

$$\||A_{g\gamma}|^r C\|_1 < egin{cases} e^{-rac{r|U|}{2e}} & |U| \leq 2e/r^* \ \left(rac{2}{r^*|U|}
ight)^{r/r^*} & ext{else} \end{cases}$$

⁴ PJ, "Weighted Norms of Cross Ambiguity Functions and Wigner Distributions", 2006 Peter Jung, HIM16, finite WH workshop

Recap. . .

$$\mathsf{SINR}(\boldsymbol{g},\gamma,\Lambda) \geq rac{\mathbb{E}|\heartsuit|^2}{\sigma_{\boldsymbol{z}}^2 + \boldsymbol{B}_{\gamma} - \mathbb{E}|\heartsuit|^2}$$

with Bessel constant B_{γ} of $\{\gamma_{\lambda}\}_{\lambda \in \Lambda}$.

Simplified Strategy...

1 Maximize $\mathbb{E}|\mathfrak{S}|^2$ over (g, γ) for given C (TF localization step).

2 Minimize B_{γ} over (Λ, γ) for fixed Λ , i.e, for $|\Lambda| \leq 1$:

$$h = (|\Lambda| \cdot S)^{-\frac{1}{2}} \gamma$$
 where $S = \sum_{m} \langle \gamma_m, \cdot \rangle \gamma_m \Rightarrow B_h = |\Lambda|^{-1}$

and for $|\Lambda| \ge 1$ proceed with Λ° (adjoint lattice) and use "Ron Shen"-duality⁵

🚯 Update g

 $^{^{-5}}$ Ron&Shen Z, "Weyl–Heisenberg frames and Riesz bases in $L_2(\mathbb{R}^d)$ ", Duke Math. J. 1997;89(2)

Recap...

$$\mathsf{SINR}(g,\gamma,\Lambda) \geq rac{\mathbb{E}|\mathfrak{S}|^2}{\sigma_z^2 + B_\gamma - \mathbb{E}|\mathfrak{S}|^2}$$

with Bessel constant B_{γ} of $\{\gamma_{\lambda}\}_{\lambda \in \Lambda}$.

Simplified Strategy...

• Maximize $\mathbb{E}|\odot|^2$ over (g,γ) for given *C* (TF localization step).

2 Minimize B_{γ} over (Λ, γ) for fixed Λ , i.e, for $|\Lambda| \leq 1$:

$$h = (|\Lambda| \cdot S)^{-\frac{1}{2}} \gamma$$
 where $S = \sum_{m} \langle \gamma_m, \cdot \rangle \gamma_m \Rightarrow B_h = |\Lambda|^{-1}$

and for $|\Lambda| \geq 1$ proceed with Λ° (adjoint lattice) and use "Ron Shen"-duality^5

Opdate g

⁵ Ron&Shen Z, "Weyl-Heisenberg frames and Riesz bases in $L_2(\mathbb{R}^d)$ ", Duke Math. J. 1997;89(2) Peter Jung, HIM16, finite WH workshop

Recap...

$$\mathsf{SINR}(g,\gamma,\Lambda) \geq rac{\mathbb{E}|\mathfrak{S}|^2}{\sigma_z^2 + B_\gamma - \mathbb{E}|\mathfrak{S}|^2}$$

with Bessel constant B_{γ} of $\{\gamma_{\lambda}\}_{\lambda \in \Lambda}$.

Simplified Strategy...

• Maximize $\mathbb{E}|\odot|^2$ over (g,γ) for given *C* (TF localization step).

2 Minimize B_{γ} over (Λ, γ) for fixed Λ , i.e, for $|\Lambda| \leq 1$:

$$h = (|\Lambda| \cdot S)^{-\frac{1}{2}} \gamma$$
 where $S = \sum_{m} \langle \gamma_m, \cdot \rangle \gamma_m \Rightarrow B_h = |\Lambda|^{-1}$

and for $|\Lambda| \ge 1$ proceed with Λ° (adjoint lattice) and use "Ron Shen"-duality⁵ **3** Update g

⁵ Ron&Shen Z, "Weyl-Heisenberg frames and Riesz bases in $L_2(\mathbb{R}^d)$ ", Duke Math. J. 1997;89(2) Peter Jung, HIM16, finite WH workshop

"Balian–Low Theorem" ⁶

• Offset-QAM modulation (OQAM)⁷ and Wilson bases⁸⁹

• *h* real&symmetric, • *A* diag., $|A|^{-1} = 2$ and • $\mathbb{R}e(i^{n}h_{m}i^{m}h_{m}) \sim \delta_{mn}$

⁶Balian, "Un principe d incertitude fort en theorie du signal ou en mecanique quantique", 1981 ⁷ Chang, "Synthesis of Band-Limited Orthogonal signals for Multicarrier Data Transmission". 1966, Bell. Syst. Tech. J. ⁸ Wilson, "Generalized Wannier functions". 1987

"Balian–Low Theorem" ⁶

• Offset-QAM modulation (OQAM)⁷ and Wilson bases⁸⁹

h real&symmetric,
{h_{\lambda}}_{\lambda \in A} tight frame h = (det(A) · S)^{-1/2} γ
A diag., |A|⁻¹ = 2 and
Re(iⁿh_n, i^mh_m) ~ δ_{mn}

⁶Balian, "Un principe d incertitude fort en theorie du signal ou en mecanique quantique", 1981

⁷Chang, "Synthesis of Band-Limited Orthogonal signals for Multicarrier Data Transmission". 1966, Bell. Syst. Tech. J.
 ⁸Wilson, "Generalized Wannier functions". 1987

⁹Daubechies, Jaffard, Journe, "A simple Wilson orthonormal basis with exponential decay". SIAM J. Math. Anal. 1991

"Balian–Low Theorem" ⁶

- Offset-QAM modulation (OQAM)⁷ and Wilson bases⁸⁹
 - h real&symmetric,
- IOTA/OQAM and FBMC

• $\{h_{\lambda}\}_{\lambda \in \Lambda}$ tight frame $h = (\det(\Lambda) \cdot S)^{-\frac{1}{2}} \gamma$ • $\operatorname{Re}\langle i^{n}h_{n}, i^{m}h_{m} \rangle \sim \delta_{mn}$

⁹Daubechies, Jaffard, Journe, "A simple Wilson orthonormal basis with exponential decay". SIAM J. Math. Anal. 1991

⁶Balian, "Un principe d incertitude fort en theorie du signal ou en mecanique quantique", 1981

 ⁷Chang, "Synthesis of Band-Limited Orthogonal signals for Multicarrier Data Transmission". 1966, Bell. Syst. Tech. J.
 ⁸Wilson, "Generalized Wannier functions". 1987

"Balian–Low Theorem" ⁶

- Offset-QAM modulation (OQAM)⁷ and Wilson bases⁸⁹
 - h real&symmetric,
 - 2 Λ diag., $|\Lambda|^{-1} = 2$ and
- IOTA/OQAM and FBMC

• $\{h_{\lambda}\}_{\lambda \in \Lambda}$ tight frame $h = (\det(\Lambda) \cdot S)^{-\frac{1}{2}} \gamma$

13/1

 $\ \ \, \mathbb{R}e\langle i^nh_n,i^mh_m\rangle\sim\delta_{mn}$

⁶Balian, "Un principe d incertitude fort en theorie du signal ou en mecanique quantique", 1981

⁷Chang, "Synthesis of Band-Limited Orthogonal signals for Multicarrier Data Transmission". 1966, Bell. Syst. Tech. J.

⁸Wilson, "Generalized Wannier functions". 1987

⁹Daubechies, Jaffard, Journe, "A simple Wilson orthonormal basis with exponential decay". SIAM J. Math. Anal. 1991 Peter Jung, HIM16, finite WH workshop

"Balian–Low Theorem" ⁶

- Offset-QAM modulation (OQAM)⁷ and Wilson bases⁸⁹
 - h real&symmetric,
 - 2 Λ diag., $|\Lambda|^{-1} = 2$ and
- IOTA/OQAM and FBMC

• $\{h_{\lambda}\}_{\lambda \in \Lambda}$ tight frame $h = (\det(\Lambda) \cdot S)^{-\frac{1}{2}} \gamma$

13/1

⁶Balian, "Un principe d incertitude fort en theorie du signal ou en mecanique quantique", 1981

⁷Chang, "Synthesis of Band-Limited Orthogonal signals for Multicarrier Data Transmission". 1966, Bell. Syst. Tech. J.

⁸Wilson, "Generalized Wannier functions". 1987

⁹Daubechies, Jaffard, Journe, "A simple Wilson orthonormal basis with exponential decay". SIAM J. Math. Anal. 1991 Peter Jung, HIM16, finite WH workshop

"Balian–Low Theorem" ⁶

- Offset-QAM modulation (OQAM)⁷ and Wilson bases⁸⁹
 - h real&symmetric,
- IOTA/OQAM and FBMC

• $\{h_{\lambda}\}_{\lambda \in \Lambda}$ tight frame $h = (\det(\Lambda) \cdot S)^{-\frac{1}{2}} \gamma$

$$e \langle i^n h_n, i^m h_m \rangle \sim \delta_{mn}$$

⁶Balian, "Un principe d incertitude fort en theorie du signal ou en mecanique quantique", 1981

⁷Chang, "Synthesis of Band-Limited Orthogonal signals for Multicarrier Data Transmission". 1966, Bell. Syst. Tech. J.

⁸Wilson, "Generalized Wannier functions". 1987

⁹Daubechies, Jaffard, Journe, "A simple Wilson orthonormal basis with exponential decay". SIAM J. Math. Anal. 1991 Peter Jung, HIM16, finite WH workshop

WSSUS Pulse Optimization, 2-Step Strategy

"without Balian-Low..." Let $F = \sigma_z^2 + |\Lambda|^{-1}$. For the optimal signaling we would get then:

• Upper bound holds for any shape of U

• Lower bound is for $U = \Box$ and ignoring the Balian-Low Theorem

Numerical Experiments

- alternating max. $SINR(g, \gamma, \Lambda) = \mathbb{E}|@|^2/\mathbb{E}|@|^2$, initialized by lower bound
- alternating max. $\mathbb{E}|\mathfrak{S}|^2$ without min. B_{γ} , initialized by lower bound
- \bullet alternating max. $\mathbb{E}| \textcircled{s}|^2$ and min. $B_\gamma,$ initialized by lower bound
- matched Gaussians
- matched tight frame from Gaussians (IOTA)

Numerical Experiments, Example

Numerical Experiments

• design on L = 512 sample values at bandwidth W

•	delay spread $ au := au_d \cdot W$	0	1	5	9	29	49	149
	Doppler $B := B_D / W \cdot L$	74	37	12	7	2	1	0

• $(\tau + 1)(2B + 1) = 150$ $(|U| \approx 0.29)$ fixed and $R = \frac{\tau + 1}{2B + 1}$ as in the table

• OQAM modulation at $|\Lambda| = 1/2$.

summary:

- waveform optimization is again a hot topic for 5G
- bounds to characterize TF localization

open problems:

• Using group structure& majorization arguments&symmetry of *C* to charactize:

$$\sum_{\mu\in\mathbb{Z}_N^2} C_\mu |\langle g,\pi_\mu\gamma
angle|^2 \geq |\langle g,\sum_{\mu\in\mathbb{Z}_N^2} C_\mu\pi_\mu\gamma
angle|^2$$

using finite-dim. equivalents of Gaussians

- Finite and quantitative versions of the Balian-Low theorem
- How to solve numerically efficient:

$$\max_{\operatorname{tr}(X)=1, X \ge 0} \|A(X)D(X)^{-1}\| = \max_{g, \gamma} \frac{\mathbb{E}|\widehat{\mathbb{C}}|^2}{\mathbb{E}|\widehat{\mathbb{C}}|^2}$$

• Include the lattice Λ

$$\max_{\mathfrak{g},\gamma,\Lambda} \frac{1}{|\Lambda|} \log(1 + \frac{\mathbb{E}|\mathfrak{S}|^2}{\mathbb{E}|\mathfrak{S}|^2})$$

summary:

- waveform optimization is again a hot topic for 5G
- bounds to characterize TF localization

open problems:

• Using group structure& majorization arguments&symmetry of C to charactize:

$$\sum_{\mu \in \mathbb{Z}_N^2} \mathcal{C}_{\mu} |\langle g, \pi_{\mu} \gamma \rangle|^2 \geq |\langle g, \sum_{\mu \in \mathbb{Z}_N^2} \mathcal{C}_{\mu} \pi_{\mu} \gamma \rangle|^2$$

using finite-dim. equivalents of Gaussians

- Finite and quantitative versions of the Balian-Low theorem
- How to solve numerically efficient:

$$\max_{\operatorname{tr}(X)=1, X \ge 0} \|A(X)D(X)^{-1}\| = \max_{g, \gamma} \frac{\mathbb{E}[\mathbb{C}]^2}{\mathbb{E}[\mathbb{C}]^2}$$

• Include the lattice A

$$\max_{\mathfrak{g},\gamma,\Lambda} \frac{1}{|\Lambda|} \log(1 + \frac{\mathbb{E}|\mathfrak{S}|^2}{\mathbb{E}|\mathfrak{S}|^2})$$

summary:

- waveform optimization is again a hot topic for 5G
- bounds to characterize TF localization

open problems:

• Using group structure& majorization arguments&symmetry of C to charactize:

$$\sum_{\mu \in \mathbb{Z}_{N}^{2}} C_{\mu} |\langle \boldsymbol{g}, \pi_{\mu} \gamma \rangle|^{2} \geq |\langle \boldsymbol{g}, \sum_{\mu \in \mathbb{Z}_{N}^{2}} C_{\mu} \pi_{\mu} \gamma \rangle|^{2}$$

using finite-dim. equivalents of Gaussians

L

- Finite and quantitative versions of the Balian-Low theorem
- How to solve numerically efficient:

$$\max_{\operatorname{tr}(X)=1,X\geq 0} \|A(X)D(X)^{-1}\| = \max_{g,\gamma} \frac{\mathbb{E}[\mathbb{O}]^2}{\mathbb{E}[\mathbb{O}]^2}$$

• Include the lattice A

$$\max_{\mathfrak{g},\gamma,\Lambda}rac{1}{|\Lambda|}\log(1+rac{\mathbb{E}|\mathbb{C}|^2}{\mathbb{E}|\mathbb{C}|^2})$$

summary:

- waveform optimization is again a hot topic for 5G
- bounds to characterize TF localization

open problems:

• Using group structure& majorization arguments&symmetry of C to charactize:

$$\sum_{\mu\in\mathbb{Z}^2_N}\mathcal{C}_\mu|\langle g,\pi_\mu\gamma
angle|^2\geq |\langle g,\sum_{\mu\in\mathbb{Z}^2_N}\mathcal{C}_\mu\pi_\mu\gamma
angle|^2$$

using finite-dim. equivalents of Gaussians

- Finite and quantitative versions of the Balian-Low theorem
- How to solve numerically efficient:

$$\max_{\operatorname{tr}(X)=1, X \ge 0} \|A(X)D(X)^{-1}\| = \max_{g, \gamma} \frac{\mathbb{E}[\mathbb{G}]^2}{\mathbb{E}[\mathbb{G}]^2}$$

• Include the lattice A

$$\max_{\mathbf{x},\gamma,\Lambda}rac{1}{|\Lambda|}\log(1+rac{\mathbb{E}|\mathbb{S}|^2}{\mathbb{E}|\mathbb{S}|^2})$$

summary:

- waveform optimization is again a hot topic for 5G
- bounds to characterize TF localization

open problems:

• Using group structure& majorization arguments&symmetry of C to charactize:

$$\sum_{\mu\in\mathbb{Z}^2_N}\mathcal{C}_\mu|\langle m{g},\pi_\mu\gamma
angle|^2\geq|\langlem{g},\sum_{\mu\in\mathbb{Z}^2_N}\mathcal{C}_\mu\pi_\mu\gamma
angle|^2$$

using finite-dim. equivalents of Gaussians

- Finite and quantitative versions of the Balian-Low theorem
- How to solve numerically efficient:

$$\max_{\operatorname{tr}(X)=1, X \ge 0} \|A(X)D(X)^{-1}\| = \max_{g, \gamma} \frac{\mathbb{E}[\mathbb{G}]^2}{\mathbb{E}[\mathbb{G}]^2}$$

• Include the lattice Λ

$$\max_{ extsf{g},\gamma,\Lambda}rac{1}{|\Lambda|}\log(1+rac{\mathbb{E}|arphi|^2}{\mathbb{E}|arphi|^2})$$

Thank You